Difference between revisions of "Scattering Amplitude"

From New IAC Wiki
Jump to navigation Jump to search
Line 37: Line 37:
  
  
<center><math>-i \mathfrak{M}_{1}=ie^2\left (\frac{(\mathbf p_{1}+\mathbf p_{1}^{'})_{\mu} (\mathbf p_{2}+\mathbf p_{2}^{'})^{\mu}}{(\mathbf p_{2}^{'}-\mathbf p_{2})^2} \right ) \qquad \qquad -i \mathfrak{M}_{2}=ie^2\left (\frac{(\mathbf p_{1}+\mathbf p_{2}^')_{\mu} (\mathbf p_{2}+\mathbf p_{1}^')^{\mu}}{(\mathbf p_{1}^{'}-\mathbf p_{2})^2} \right ) </math></center>
+
<center><math>-i \mathfrak{M}_{1}=ie^{2}\left (\frac{(\mathbf p_{1}+\mathbf p_{1}^{'})_{\mu} (\mathbf p_{2}+\mathbf p_{2}^{'})^{\mu}}{(\mathbf p_{2}^{'}-\mathbf p_{2})^{2}} \right ) \qquad \qquad -i \mathfrak{M}_{2}=ie^{2}\left (\frac{(\mathbf p_{1}+\mathbf p_{2}^')_{\mu} (\mathbf p_{2}+\mathbf p_{1}^{'})^{\mu}}{(\mathbf p_{1}^{'}-\mathbf p_{2})^{2}} \right ) </math></center>
  
  

Revision as of 21:04, 29 December 2018

Navigation_


Scattering Amplitude

In the Møller scattering (P1+P2P1+P2) we have identical particles in the initial and final states. This that the amplitude to be symmetric under interchange of particles (P1P2 or P1P2). Due to this symmetry we can determine two 1st level Feynman diagrams to describe this scattering.

Feynman1stLevel.png

The amplitudes of the individual Feynman diagrams add linearly to form the total amplitude

M=M1+M2


Using the Feynman rules, each vertex contribute a factor

ie(pinitial+pfinal)μ

and the propagator gives

igμνq2

where q is the momentum of the photon

qpfinalpinitial

and gμν is the Mandelstam metric which allows the transformation from the contravariant to covariant form needed for tensor multiplication. Examining both Feynman diagrams seperately, we find for their individual amplitudes


-i \mathfrak{M}_{1}=ie(\mathbf p_{1}+\mathbf p_{1}^{'})^{\mu} \left (\frac{-ig_{\mu \nu}}{q^2} \right ) ie ( \mathbf p_{2}+\mathbf p_2^')^{\nu} \qquad \qquad -i \mathfrak{M}_{2}=ie(\mathbf p_{1}+\mathbf p_{2}^')^{\mu} \left (\frac{-ig_{\mu \nu}}{q^2} \right ) ie ( \mathbf p_{2}+\mathbf p_1^')^{\nu}


iM1=ie(p1+p1)μ(igμν(p2p2)2)ie(p2+p2)νiM2=ie(p1+p2)μ(igμν(p1p2)2)ie(p2+p1)ν


-i \mathfrak{M}_{1}=ie^{2}\left (\frac{(\mathbf p_{1}+\mathbf p_{1}^{'})_{\mu} (\mathbf p_{2}+\mathbf p_{2}^{'})^{\mu}}{(\mathbf p_{2}^{'}-\mathbf p_{2})^{2}} \right ) \qquad \qquad -i \mathfrak{M}_{2}=ie^{2}\left (\frac{(\mathbf p_{1}+\mathbf p_{2}^')_{\mu} (\mathbf p_{2}+\mathbf p_{1}^{'})^{\mu}}{(\mathbf p_{1}^{'}-\mathbf p_{2})^{2}} \right )


Without loss of generality, we can extend this to the center of mass frame


iMee=ie2((p1+p1)μ(p2+p2)μ(p2p2)2(p1+p2)μ(p2+p1)μ(p1p2)2)


Mee=e2(P1P2+P1P2+P1P2+P1P2(P2P2)2P1P2+P2P1+P2P2+P1P1(P1P2)2)



Using the fact that P1P2=P1P2P1P1=P2P2P1P2=P2P1


Mee=e2(2P1P2+2P1P2(P222P2P2+P22)2P1P2+2P1P1(P212P1P2+P22))


Mee=e2(2P1P2+2P1P2(P222P2P2+P22)2P1P2+2P1P1(P222P2P1+P21))


Mee=e2(2P1P2+2P1P2(P2P2)22P1P2+2P1P1(P2P1)2)



Mee=e2((P212P1P2+P22)(P21+2P1P2+P22)t(P212P1P1+P21)(P21+2P1P2+P22)u)


Mee=e2(ust+tsu)



Navigation_