Difference between revisions of "Limit of Energy in Lab Frame"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
 
		
	
| Line 3: | Line 3: | ||
| <center><math>t \equiv \left({\mathbf P_1^*}- {\mathbf P_1^{'*}}\right)^2=\left({\mathbf P_2^{*}}- {\mathbf P_2^{'*}}\right)^2</math></center> | <center><math>t \equiv \left({\mathbf P_1^*}- {\mathbf P_1^{'*}}\right)^2=\left({\mathbf P_2^{*}}- {\mathbf P_2^{'*}}\right)^2</math></center> | ||
| − | + | =In the CM Frame= | |
| <center><math>{\mathbf P_1^{*}}=-{\mathbf P_2^{*}}</math></center> | <center><math>{\mathbf P_1^{*}}=-{\mathbf P_2^{*}}</math></center> | ||
| Line 57: | Line 57: | ||
| − | + | =In the Lab Frame= | |
| <center><math>t={\mathbf P_1^{2}}+ {\mathbf P_1^{'2}}-2 {\mathbf P_1} {\mathbf P_1^{'}}</math></center> | <center><math>t={\mathbf P_1^{2}}+ {\mathbf P_1^{'2}}-2 {\mathbf P_1} {\mathbf P_1^{'}}</math></center> | ||
| Line 64: | Line 64: | ||
| − | <center><math>=2m^2-2E_1E_1^'+2 p_1  p_1^'=2m^2-2E_2E_2^'+2 p_2  p_2^'</math></center> | + | <center><math>t=2m^2-2E_1E_1^{'}+2 \vec p_1  \vec p_1^{'}=2m^2-2E_2E_2^{'}+2 p_2^  p_2^{'}</math></center> | 
| + | |||
Revision as of 15:42, 15 March 2018
The t quantity is known as the square of the 4-momentum transfer
In the CM Frame
where  and is the angle between the before and after momentum in the CM frame
Using the relativistic relation  this reduces to
The maximum momentum is transfered at 90 degrees, i.e. 
This can be rewritten again using the relativistic energy relation 
In the Lab Frame
with
and