Difference between revisions of "S-Channel"
Jump to navigation
Jump to search
| Line 26: | Line 26: | ||
<center><math>\mathbf P^{2} \equiv m^2</math></center> | <center><math>\mathbf P^{2} \equiv m^2</math></center> | ||
| + | This gives, | ||
| + | <center><math>s \equiv m_1^{2}+2 \mathbf P_1^* \mathbf P_2^*+ m_2^{2}</math></center> | ||
| − | + | ||
| + | For the case <math>m_1=m_2=m</math> | ||
| − | |||
<center><math>s \equiv 2m^{2}+2 \mathbf P_1^* \mathbf P_2^*</math></center> | <center><math>s \equiv 2m^{2}+2 \mathbf P_1^* \mathbf P_2^*</math></center> | ||
| + | |||
| + | Using the relationship | ||
| + | |||
| + | |||
| + | <center><math>\mathbf P_1 \cdot \mathbf P_2 = E_{1}E_{2}-(\vec p_1 \vec p_2)</math></center> | ||
| − | |||
<center><math>s \equiv 2m^2+2(E_1^*E_2^*-\vec p_1^* \vec p_2^*)</math></center> | <center><math>s \equiv 2m^2+2(E_1^*E_2^*-\vec p_1^* \vec p_2^*)</math></center> | ||