Difference between revisions of "G4Beamline PbBi"

From New IAC Wiki
Jump to navigation Jump to search
Line 76: Line 76:
  
 
[[File:ElectronTracks.png| 200 px]][[File:PhotonTracks.png| 200 px]]
 
[[File:ElectronTracks.png| 200 px]][[File:PhotonTracks.png| 200 px]]
 +
 +
[[File:ElectronEnergy.png| 200 px]][[File:PhotonEnergy.png| 200 px]]
 +
 +
MCNPX simulations of energy deposition into different cells are below. There is a slight overestimate (they add up to about 120%). Positrons contribute less than 1% of electrons' contribution. No magnetic filed is assumed.
 +
 +
[[File:Model.png| 400 px]]
 +
 +
[[File:Table1.png| 200 px]][[File:PTable2.png| 200 px]]
  
 
[[File:ElectronEnergy.png| 200 px]][[File:PhotonEnergy.png| 200 px]]
 
[[File:ElectronEnergy.png| 200 px]][[File:PhotonEnergy.png| 200 px]]

Revision as of 20:13, 11 May 2015

Development of a Positron source using a PbBi converter and a Solenoid

Converter target properties

Definition of Lead Bismuth


1cm diameter target 2 mm thick PbBi

0.5 Tesla solenoid


Desire to know

Emmittance (mrad * mm)

dispersion (Delta P/P) (mradian/1000th mm/1000th)

of electrons after the PbBi target.


pole face rotation in vertical plane.

G4BeamLine and MCNPX

Target thickness optimization

PbBi_THickness_GaussBeam

2mm thick PbBi, 10 MeV, 1 cm cylindrical incident electron distribution

G4beamline pencil beam 10 cm radius

beam ellipse particle=e- nEvents=1000000 beamZ=0.0 beamX=0. beamY=0. \
        sigmaX=10.0 sigmaY=10.0 sigmaXp=0.000 sigmaYp=0.000 \
      meanMomentum=10. sigmaE=0. maxR=10.

Incident Electron spatial distribution and energy

PbBi 5-1-15 X-Yposition.pngPbBi 5-1-15 Ein.png

Positron and Electron Momentum after the converter

PbBi 5-1-15 Ppositron.pngPbBi 5-1-15 Pelectron.png

PbBi Thickness (mm) #positrons/million electrons (G4Beamline) #positrons/million electrons (MCNPX)
1 1169,1083,1068,1090,1088 =1100[math]\pm[/math] 40 1091
1.5 1723, 1668,1671, 1687,1726=1695[math]\pm[/math] 28 1728
2 1902,1921,1886,1967,1922=1920[math]\pm[/math] 30 1984
3 1920,1880,1883,1864,1857=1881 [math]\pm[/math] 24 1986
4 1688, 1766, 1712, 1709, 1753=1726[math]\pm[/math] 33 1858
5 1569,1585,1509 ,1536,1551=1550[math]\pm[/math] 29 1646
7 1475,1450,1457,1428,1477 =1457[math] \pm[/math] 20 1541
10 1250,1180,1178,1186,1166=1192[math]\pm[/math] 33 1216

G4Bl-vs-MCNPX 5-5-2015.png


Layout.png

ElectronTracks.pngPhotonTracks.png

ElectronEnergy.pngPhotonEnergy.png

MCNPX simulations of energy deposition into different cells are below. There is a slight overestimate (they add up to about 120%). Positrons contribute less than 1% of electrons' contribution. No magnetic filed is assumed.

Model.png

Table1.png200 px

ElectronEnergy.pngPhotonEnergy.png

2mm thick PbBi, 10 MeV, point source

G4beamline pencil beam 10 cm radius

beam ellipse particle=e- nEvents=1000000 beamZ=0.0 beamX=0. beamY=0. \
        sigmaX=10.0 sigmaY=10.0 sigmaXp=0.000 sigmaYp=0.000 \
      meanMomentum=10. sigmaE=0. maxR=10.
PbBi Thickness (mm) #positrons/million electrons (G4Beamline) #positrons/million electrons (MCNPX)
1 1091
1.5 1728
2 1902[math]\pm[/math] 43 1984
2.5 2062
3 [math]\pm[/math] 13 1986
3.5 1938
4 [math]\pm[/math] 39 1858
5 1646
6 [math] \pm[/math] 37 1541
10 1216

Solenoid

Inner Radiusu=

Outer Radius =

Length =

Current=

Magnetic Field Map in cylindrical coordinates (Z & R) from Niowave

Positrons#Simulations