Difference between revisions of "TF IsotopeTracers4Cracks"

From New IAC Wiki
Jump to navigation Jump to search
Line 88: Line 88:
 
The crack size decreases as you move from left to right in the table.
 
The crack size decreases as you move from left to right in the table.
  
The result below is from a 1800 keV uniform point source and a 10 cm thick shale wall with a cylindrical hole through the center (X=0:Y=0)
+
The result below is from a '''1800 keV''' uniform point source and a 10 cm thick shale wall with a cylindrical hole through the center (X=0:Y=0)
  
 
{| border="1"  |cellpadding="20" cellspacing="0  
 
{| border="1"  |cellpadding="20" cellspacing="0  
Line 98: Line 98:
 
|}
 
|}
  
 +
 +
The result below is from a '''895 keV''' uniform point source and a 10 cm thick shale wall with a cylindrical hole through the center (X=0:Y=0)
 +
 +
{| border="1"  |cellpadding="20" cellspacing="0
 +
|-
 +
|[[File:TF895_100mmCrack_XvsY.png| 200 px]] || [[File:TF895_50mmCrack_XvsY.png| 200 px]]|| [[File:TF895_10mmCrack_XvsY.png| 200 px]]|| [[File:TF895_5mmCrack_XvsY.png| 200 px]]|| [[File:TF_1mmCrack_XvsY.png| 200 px]]
 +
|-
 +
|100 mm hole|| 50 mm hole||10 mm ||5 mm|| 1 mm
 +
|-
 +
|}
  
 
===Peak===
 
===Peak===

Revision as of 16:33, 10 April 2013

Definition of Shale

Shale was assumed to have the chemical composition of

[math]\mbox{Al}_2\mbox{Si}_2\mbox{O}_5(\mbox{OH})_4[/math]

and a density of 2.6 g/[math]\mbox{cm}^3[/math]


G4Element* O = new G4Element("Oxygen"  , "O", z=8., a= 16.00*g/mole);
G4Element* Al = new G4Element("Aluminum"  , "Al", z=13., a= 26.98*g/mole);
G4Element* Si = new G4Element("Silicon"  , "Si", z=14., a= 28.085*g/mole);
G4Element* H = new G4Element("Hydrogen"  , "H", z=1., a= 1.008*g/mole);

G4Material* Shale = new G4Material("Shale", density= 2.6*g/cm3, nel=4);
Shale->AddElement(Al, 15*perCent);
Shale->AddElement(Si, 15*perCent);
Shale->AddElement(O, 38*perCent);
Shale->AddElement(H, 32*perCent);

Photon Attenuation in Shale

According to the XCOM database, the attenuation length for a 1.8 MeV photon is 0.16 /cm and 0.895 is 0.22/cm through shale.

File:XCOM attenuation4Shale.pdf


Directing a 1.8 MeV beam of photons in GEANT4 towards various thicknesses of shale produced the graph below.

GEANT4AttShale 3212012.png

XCOM predicts an attenuation coefficient of 0.0441 cm^2/g which becomes 0.12/cm when you multiply by the shale density of 2.6 g/cm^3. The fit to GEANT4's predictions above produces a value of 0.1/cm when you plot the number of photons that pass through the shale and still have an energy of 1.8 MeV.

If I use a point source isotropically emitting 1800 keV photons I observe

GEANT4AttShalePntSrc 322013.png

which gives a the value of 0.1/cm as well.

Yittrium in Shale

A simulation of the penetration of the 0.895 and 1.8 MeV photons from Yittrium through shale.

GEANT4 create a point source or 895 keV photon and another with 1800 keV photons iostropically distributed.

A 4" thick piece of shale was placed between the source and the detector.


Two ratios were constructed.

[math]R_p = \frac{\mbox{counts under the 1800 keV peak}}{\mbox{counts under the 895 keV peak}}[/math]

[math]R_I = \frac{\mbox{number of photons from 1800 keV source penetrating shale}}{\mbox{number of photons from 895 keV source penetrating shale}}[/math]

Y88ShaleNoCrack 1.png

Insert a single crack

A simulation was performed that predicted the transmission of photons through 10 centimeters of shale. The shale is in the form of a cylinder with a hole through the central axis.

The source was a uniform points source. One set of simulations used a 1.8 MeV photon and another used a 0.895 photon.


TF Crack Yit 04092013.png

Energy distribution

TF Crack Edist 895.pngTF Crack Edist 1800.png

Position Distribution

The Shale is a cylinder and the detector is a rectangle. A cut is used to look only at photons within the cylinder.


Units are Centimeters.

TF Crack PositnDist.pngTF Crack PositnDistCuts.png

Rates

Surface rates -vs- Crack size

The crack size decreases as you move from left to right in the table.

The result below is from a 1800 keV uniform point source and a 10 cm thick shale wall with a cylindrical hole through the center (X=0:Y=0)

TF 100mmCrack XvsY.png 200 px TF 10mmCrack XvsY.png TF 5mmCrack XvsY.png TF 1mmCrack XvsY.png
100 mm hole 50 mm hole 10 mm 5 mm 1 mm


The result below is from a 895 keV uniform point source and a 10 cm thick shale wall with a cylindrical hole through the center (X=0:Y=0)

TF895 100mmCrack XvsY.png 200 px TF895 10mmCrack XvsY.png TF895 5mmCrack XvsY.png TF 1mmCrack XvsY.png
100 mm hole 50 mm hole 10 mm 5 mm 1 mm

Peak

A projection is made along the X-axis with the cuts

  1. radius < 100 cm
  2. Energy > Source energy (0.89 or 1.7 MeV)

200 px200 px


TF_IsotopeTracers#Tracers_for_Cracks