Difference between revisions of "X-ray Worldwide facilities"
Jump to navigation
Jump to search
Line 3: | Line 3: | ||
==[http://en.wikipedia.org/wiki/Nuclear_fusion Nuclear_fusion ]== | ==[http://en.wikipedia.org/wiki/Nuclear_fusion Nuclear_fusion ]== | ||
− | ==[http://en.wikipedia.org/wiki/Magnetic_confinement_fusion Magnetic_confinement_fusion]== | + | ===[http://en.wikipedia.org/wiki/Magnetic_confinement_fusion Magnetic_confinement_fusion]=== |
− | ==[http://en.wikipedia.org/wiki/Inertial_confinement_fusion Inertial_confinement_fusion]== | + | ===[http://en.wikipedia.org/wiki/Inertial_confinement_fusion Inertial_confinement_fusion (ICF)]=== |
[[File:740px-Inertial confinement fusion.svg.png]] | [[File:740px-Inertial confinement fusion.svg.png]] | ||
Line 16: | Line 16: | ||
#Thermonuclear burn spreads rapidly through the compressed fuel, yielding many times the input energy. | #Thermonuclear burn spreads rapidly through the compressed fuel, yielding many times the input energy. | ||
+ | |||
+ | ==Facility suitable for ICF== | ||
*[http://en.wikipedia.org/wiki/National_Ignition_Facility National_Ignition_Facility at the Lawrence Livermore National Laboratory] | *[http://en.wikipedia.org/wiki/National_Ignition_Facility National_Ignition_Facility at the Lawrence Livermore National Laboratory] | ||
− | |||
− | |||
* [http://en.wikipedia.org/wiki/Laser_M%C3%A9gajoule Laser_Megajoule in Bordeaux, France ] | * [http://en.wikipedia.org/wiki/Laser_M%C3%A9gajoule Laser_Megajoule in Bordeaux, France ] | ||
− | |||
− | |||
− | |||
* [http://en.wikipedia.org/wiki/Z_machine Z machine at the Sandia National Laboratories ] | * [http://en.wikipedia.org/wiki/Z_machine Z machine at the Sandia National Laboratories ] | ||
**1996 Z machine: 18 MA 100ns | **1996 Z machine: 18 MA 100ns |
Revision as of 22:15, 6 February 2013
Nuclear_fusion
Magnetic_confinement_fusion
Inertial_confinement_fusion (ICF)
Schematic of the stages of inertial confinement fusion using lasers. The blue arrows represent radiation; orange is blowoff; purple is inwardly transported thermal energy.
- Laser beams or laser-produced X-rays rapidly heat the surface of the fusion target, forming a surrounding plasma envelope.
- Fuel is compressed by the rocket-like blowoff of the hot surface material.
- During the final part of the capsule implosion, the fuel core reaches 20 times the density of lead and ignites at 100,000,000 ˚C.
- Thermonuclear burn spreads rapidly through the compressed fuel, yielding many times the input energy.
Facility suitable for ICF
- National_Ignition_Facility at the Lawrence Livermore National Laboratory
- Laser_Megajoule in Bordeaux, France
- Z machine at the Sandia National Laboratories
- 1996 Z machine: 18 MA 100ns
- 2006 ZR (Refurbished): 27MA 95ns
- planned ZN (Z Neutron): 20 and 30 MJ per short
- planned Z-IFE (Z-inertial fusion energy): 70MA 1 petawatt
- fact: As of 2012 Fusion shot simulations at 60 to 70 million amperes are showing a 100 to 1000 fold return on input energy