Difference between revisions of "Forest Bhabha Scattering"
Jump to navigation
Jump to search
Line 23: | Line 23: | ||
:<math>\bar{u}_4 \equiv</math> finial positron spinor | :<math>\bar{u}_4 \equiv</math> finial positron spinor | ||
+ | =Matrix element for scaqttering= | ||
+ | =Matrix element for annihilation= | ||
+ | |<math>\mathcal{M} = \,</math> | ||
+ | |<math>-e^2 \left( \bar{v}_{k} \gamma^\mu v_{k'} \right) \frac{1}{(k-k')^2} \left( \bar{u}_{p'} \gamma_\mu u_p \right) </math> | ||
+ | |<math>+e^2 \left( \bar{v}_{k} \gamma^\nu u_p \right) \frac{1}{(k+p)^2} \left( \bar{u}_{p'} \gamma_\nu v_{k'} \right) </math> | ||
[[Forest_QMII]] | [[Forest_QMII]] |
Revision as of 04:49, 13 April 2012
Bhabha (electron -positron) Scattering
Bhabha scattering identifies the scatterng of an electron and positron (particle and anti-particle). There are two processes that can occur
1.) scattering via the exchange of a virtual photon
2.) annihilation in which the e+ and e- spend some time as a photon which then reconverts back to an e+e- pair
variables
Let:
- initial electron 4-momentum
- u_1 \equiv initial electron spinor
- p_2 \equiv final electron 4-momentum
- u_2 \equiv final electron spinor
- p_3 \equiv initial positron 4-momentum
- \bar{u}_3 \equiv initial positron spinor
- p_4 \equiv finial positron 4-momentum
- finial positron spinor
Matrix element for scaqttering
Matrix element for annihilation
|
| |