Difference between revisions of "DeltaDoverD Progress"
(→B<0) |
|||
Line 1,834: | Line 1,834: | ||
− | [[File:electronefficiencyratioBp7Bn11.jpg|300px]] | + | [[File:electronefficiencyratioBp7Bn11.jpg|300px|thumb|Inclusive]] |
[[Media:electronefficiencyratioBp7Bn11.txt]] | [[Media:electronefficiencyratioBp7Bn11.txt]] |
Revision as of 00:33, 12 January 2011
9/5/08
SIDIS Analysis
a.) Cross-Section comparison
i.) Calculate absolute cross section for
= 0.5, 1 < Q^2 < 4 GeV^2 , W = 1.45 +/- 0.2 GeV
ii.) Plot
As one can see from histograms of the pion_theta_angle_vs_phi_angle_in_CM_Frame and the electron_theta_angle_vs_phi_angle_in_CM_Frame, the pion and electron acceptance in the region of
is nearly zero(significantly low).
9/19/08
SIDIS Analysis
a.) Cross-Section comparison
i.) Calculate absolute cross section for
= 0.5, 1 < Q^2 < 4 GeV^2 , W = 1.45 +/- 0.2 GeV
?
- Documentation
The five-fold differential cross section for single pion production is equal to the following:
The Jacobian term can be given as:
where is the virtual photon flux and can be written as
The reason of having low cross section might be binning
In paper they use the following number of bins:
Variable | Num. Bin | Range | Bin Size |
W | 27 | 1.15 - 1.7 GeV | 20 MeV |
7 | 1.1 - 5.0 | variable | |
10 | -1.0 - 1.0 | 0.2 | |
24 | -180. - 180 | 15 |
Number of bins in my case were 360.
Number of bins equal is ~24
When i applied
In paper they use liquid-hydrogen unpolarized target(we have NH3 and ND3 polarized). The polarized electron beam current is 8 nA(in our case it is about 6 nA). and luminosity is different too. It also depends on statistics.
ii.) What is smallest angular coverage of EC (8 degrees?) Determine phi region where there is no acceptance ( where should we stop plotting data)?
iii.) Asymmetry Calculation
a.) Beam Asymmetry Plot
In order to plot Beam Asymmetry we need to plot for the first time the histogram of the invariant_mass_vs_cross_section. Then determine the structure function fitting the cross section and calculating the beam asymmetry function which is given as :
for given cos(theta) of the pion in cm, Q^2 and W invariant mass.
Choose kinematics ( a single theta and phi point )to max our stats and comparison to paper Histogram the following
- Number of e-pi coincidence events, number of FC counts
- Number of e-pi coincidence events/FC counts
- Number of e-pi coincidence events/FC count/Pt
for groups of runs with h_e,P_t = ++, +-, -+, --
table with 4 columns of h_e, P_t and 3 rows of the above histograms
9/26/08
SIDIS Analysis
1.) make semi-inclusive spectrum:
a.) h>0 Pt>0 b.) h > 0 pt<0 c.)h<0 pt>0 d.)h<0 pt<0
2.) ad up opposite target polarization histograms
3.) subtract h> 0 and h<0
helflag = 1 =>
helflag = 2 =>
helflag = 3 =>
helflag = 4 =>
Phi_angle_CM vs Asymmetry
Compared data(there is no table for asymmetry values like cross section):
11/21/08
0.) insert run summarry table, Pb, Pt, PB*Pt, Btorus
1.) make semi-inclusive spectrum:
a.) h>0 Pt>0
b.) h > 0 pt<0
c.)h<0 pt>0
d.)h<0 pt<0
2.) helicity difference plots for Pt>0 and Pt<0
3.) Asym plots for Pt>0 and Pt< 0
4.) unpolarized target asymmetry
Rebin asymmetry hisograms and combine the two into a total asymmetry histogram
Run Summary Table
The table below should have run ranges with http://www.jlab.org/Hall-B/secure/eg1/EG2000/eg1b_analysis_progress.htm.according to the elastic asymmetry measurements stored at
http://www.jlab.org/Hall-B/secure/eg1/EG2000/josh/pbpt/
5.73 in
pos = 0.45743 +/- 0.04269
neg = -0.38816 +/- 0.04556
5.73 out
pos = 0.46604 +/- 0.03496
neg = -0.50684 +/- 0.03578
Start Run Number | Beam Polarization(Pb) | Target Polarization(Pt) from dstdump file | Pb*Pt | Beam Torus | Beam Energy (MeV) |
26998 | 0 | -0.69 | 0.46604 | -2250 | 5736 |
26996 | -0.71 | -0.69 | 0.46604 | -2250 | 5736 |
26995 | -0.71 | -0.69 | 0.46604 | -2250 | 5736 |
26994 | -0.71 | -0.73 | 0.46604 | -2250 | 5736 |
26993 | -0.71 | -0.72 | 0.46604 | -2250 | 5736 |
26992 | -0.71 | -0.73 | 0.46604 | -2250 | 5736 |
26991 | -0.71 | -0.75 | 0.46604 | -2250 | 5736 |
26990 | -0.71 | -0.76 | 0.46604 | -2250 | 5736 |
26989 | 0.71 | -0.67 | -0.38816 | 2250 | 5736 |
26988 | 0.71 | -0.68 | -0.38816 | 2250 | 5736 |
26987 | 0.71 | -0.67 | -0.38816 | 2250 | 5736 |
26986 | 0.71 | -0.68 | -0.38816 | 2250 | 5736 |
26985 | 0.71 | -0.68 | -0.38816 | 2250 | 5736 |
26984 | 0.71 | -0.68 | -0.38816 | 2250 | 5736 |
26983 | 0.71 | -0.68 | -0.38816 | 2250 | 5736 |
26981 | 0.71 | -0.68 | -0.38816 | 2250 | 5736 |
26980 | 0.71 | -0.7 | -0.38816 | 2250 | 5736 |
26979 | 0.71 | -0.71 | -0.38816 | 2250 | 5736 |
26966 | 0.71 | 0.74 | 0.45743 | 2250 | 5736 |
26965 | 0.71 | 0.74 | 0.45743 | 2250 | 5736 |
26964 | 0.71 | 0.74 | 0.45743 | 2250 | 5736 |
26963 | 0.71 | 0.74 | 0.45743 | 2250 | 5736 |
26962 | 0.71 | 0.74 | 0.45743 | 2250 | 5736 |
26961 | 0.71 | 0.75 | 0.45743 | 2250 | 5736 |
26960 | 0.71 | 0.76 | 0.45743 | 2250 | 5736 |
26959 | 0.71 | 0.69 | 0.45743 | 2250 | 5736 |
26958 | 0.71 | 0.69 | 0.45743 | 2250 | 5736 |
26957 | 0.71 | 0.69 | 0.45743 | 2250 | 5736 |
26956 | 0.71 | 0.69 | 0.45743 | 2250 | 5736 |
26955 | 0.71 | 0.69 | 0.45743 | 2250 | 5736 |
26954 | 0.71 | 0.69 | 0.45743 | 2250 | 5736 |
26953 | 0.71 | 0.69 | 0.45743 | 2250 | 5736 |
26952 | 0.71 | 0.7 | 0.45743 | 2250 | 5736 |
26951 | 0.71 | 0.7 | 0.45743 | 2250 | 5736 |
26948 | 0.71 | 0.7 | 0.45743 | 2250 | 5736 |
26947 | 0.71 | 0.7 | 0.45743 | 2250 | 5736 |
26946 | 0.71 | 0.7 | 0.45743 | 2250 | 5736 |
26945 | 0.71 | 0.7 | 0.45743 | 2250 | 5736 |
26943 | 0.7 | 0.7 | 0.45743 | 2250 | 5736 |
26942 | 0.7 | 0.7 | 0.45743 | 2250 | 5736 |
26941 | 0.7 | 0.7 | 0.45743 | 2250 | 5736 |
26940 | 0.7 | 0.7 | 0.45743 | 2250 | 5736 |
26939 | 0.7 | 0.7 | 0.45743 | 2250 | 5736 |
26938 | 0.7 | 0.7 | 0.45743 | 2250 | 5736 |
26937 | 0.7 | 0.7 | 0.45743 | 2250 | 5736 |
26934 | 0.7 | 0.7 | 0.45743 | 2250 | 5736 |
26933 | 0.7 | 0.71 | 0.45743 | 2250 | 5736 |
26932 | 0.7 | 0.71 | 0.45743 | 2250 | 5736 |
26931 | 0.7 | 0.71 | 0.45743 | 2250 | 5736 |
26930 | 0.7 | 0.71 | 0.45743 | 2250 | 5736 |
26929 | 0.7 | 0.71 | 0.45743 | 2250 | 5736 |
26928 | 0.7 | 0.72 | 0.45743 | 2250 | 5736 |
26927 | 0.7 | 0.72 | 0.45743 | 2250 | 5736 |
26926 | 0.7 | 0.73 | 0.45743 | 2250 | 5736 |
26925 | 0.7 | 0.73 | 0.45743 | 2250 | 5736 |
27074 | 0.71 | -0.81 | -0.38816 | 2250 | 5736 |
27075 | 0.71 | -0.77 | -0.38816 | 2250 | 5736 |
27076 | 0.71 | -0.74 | -0.38816 | 2250 | 5736 |
27077 | 0.71 | -0.74 | -0.38816 | 2250 | 5736 |
27078 | 071 | -0.75 | -0.38816 | 2250 | 5736 |
27079 | 0.71 | -0.72 | -0.38816 | 2250 | 5736 |
27100 | 0.71 | 0.76 | 0.45743 | 2250 | 5736 |
27101 | 0.71 | 0.76 | 0.45743 | 2250 | 5736 |
27102 | 0.71 | 0.73 | 0.45743 | 2250 | 5736 |
27105 | 0.61 | 0.73 | 0.45743 | 2250 | 5736 |
27106 | 0.61 | 0.73 | 0.45743 | 2250 | 5736 |
27107 | 0.61 | -0.71 | -0.38816 | 2250 | 5736 |
27108 | 0.61 | -0.7 | -0.38816 | 2250 | 5736 |
27109 | 0.61 | -0.7 | -0.38816 | 2250 | 5736 |
27111 | 0.61 | -0.71 | -0.38816 | 2250 | 5736 |
27112 | 0.61 | -0.69 | -0.38816 | 2250 | 5736 |
27114 | 0.61 | 0 | 2250 | 5736 | |
27116 | -0.58 | 0.2 | -0.38816 | 2250 | 5736 |
27124 | -0.7 | 0.24 | -0.38816 | 2250 | 5736 |
27125 | -0.7 | 0.25 | -0.38816 | 2250 | 5736 |
27126 | -0.7 | 0.26 | -0.38816 | 2250 | 5736 |
27127 | -0.7 | 0.26 | -0.38816 | 2250 | 5736 |
27128 | -0.7 | 0.26 | -0.38816 | 2250 | 5736 |
27129 | -0.7 | 0.26 | -0.38816 | 2250 | 5736 |
27131 | -0.7 | 0.26 | -0.38816 | 2250 | 5736 |
27132 | -0.7 | 0.26 | -0.38816 | 2250 | 5736 |
27133 | -0.7 | 0.26 | -0.38816 | 2250 | 5736 |
27134 | -0.7 | 0.26 | -0.38816 | 2250 | 5736 |
27135 | -0.7 | 0.26 | -0.38816 | 2250 | 5736 |
27136 | -0.7 | 0.26 | -0.38816 | 2250 | 5736 |
27137 | -0.7 | 0.25 | -0.38816 | 2250 | 5736 |
27138 | -0.7 | 0.25 | -0.38816 | 2250 | 5736 |
27139 | -0.7 | 0.25 | -0.38816 | 2250 | 5736 |
27141 | -0.7 | 0.25 | -0.38816 | 2250 | 5736 |
27142 | -0.7 | 0.25 | -0.38816 | 2250 | 5736 |
27143 | -0.7 | 0.25 | -0.38816 | 2250 | 5736 |
27145 | -0.7 | 0.24 | -0.38816 | 2250 | 5736 |
27146 | -0.7 | 0.24 | -0.38816 | 2250 | 5736 |
27148 | -0.7 | 0.24 | -0.38816 | 2250 | 5736 |
27149 | -0.7 | -0.09 | 0.45743 | 2250 | 5736 |
27150 | -0.7 | -0.12 | 0.45743 | 2250 | 5736 |
27152 | -0.64 | -0.18 | 0.45743 | 2250 | 5736 |
27153 | -0.64 | -0.19 | 0.45743 | 2250 | 5736 |
27154 | -0.64 | -0.19 | 0.45743 | 2250 | 5736 |
27155 | -0.64 | -0.19 | 0.45743 | 2250 | 5736 |
27156 | -0.64 | -0.19 | 0.45743 | 2250 | 5736 |
27157 | -0.64 | -0.19 | 0.45743 | 2250 | 5736 |
27160 | -0.64 | -0.18 | 0.45743 | 2250 | 5736 |
27161 | -0.64 | -0.18 | 0.45743 | 2250 | 5736 |
27162 | -0.64 | -0.19 | 0.45743 | 2250 | 5736 |
27163 | -0.64 | -0.19 | 0.45743 | 2250 | 5736 |
27165 | -0.64 | -0.19 | 0.45743 | 2250 | 5736 |
27166 | -0.64 | 0.18 | -0.38816 | 2250 | 5736 |
27167 | -0.64 | 0.22 | -0.38816 | 2250 | 5736 |
27168 | -0.64 | 0.23 | -0.38816 | 2250 | 5736 |
27169 | -0.64 | 0.23 | -0.38816 | 2250 | 5736 |
27170 | -0.64 | 0.23 | -0.38816 | 2250 | 5736 |
27171 | -0.64 | 0.23 | -0.38816 | 2250 | 5736 |
27172 | -0.64 | -0.35 | 0.45743 | 2250 | 5736 |
27175 | -0.7 | -0.78 | 0.45743 | 2250 | 5736 |
27176 | -0.7 | -0.72 | 0.45743 | 2250 | 5736 |
27177 | -0.7 | -0.7 | 0.45743 | 2250 | 5736 |
27178 | -0.7 | -0.69 | 0.45743 | 2250 | 5736 |
27179 | -0.7 | -0.67 | 0.45743 | 2250 | 5736 |
27180 | -0.7 | -0.67 | 0.45743 | 2250 | 5736 |
27181 | -0.7 | -0.66 | 0.45743 | 2250 | 5736 |
27182 | -0.7 | -0.72 | 0.45743 | 2250 | 5736 |
27183 | -0.7 | -0.68 | 0.45743 | 2250 | 5736 |
27184 | -0.7 | -0.63 | 0.45743 | 2250 | 5736 |
27186 | -0.7 | 0.72 | -0.38816 | 2250 | 5736 |
27187 | -0.7 | 0.71 | -0.38816 | 2250 | 5736 |
27188 | -0.7 | 0.71 | -0.38816 | 2250 | 5736 |
27189 | -0.7 | 0.7 | -0.38816 | 2250 | 5736 |
27190 | -0.7 | 0.69 | -0.38816 | 2250 | 5736 |
27191 | -0.7 | 0.69 | -0.38816 | 2250 | 5736 |
27192 | -0.7 | 0.68 | -0.38816 | 2250 | 5736 |
27193 | -0.7 | 0.69 | -0.38816 | 2250 | 5736 |
27194 | -0.7 | 0.7 | -0.38816 | 2250 | 5736 |
27195 | -0.7 | 0.69 | -0.38816 | 2250 | 5736 |
27113 | 0.61 | 0.68 | 0.45743 | 2250 | 5736 |
Phi_Angle_CM_Frame for Positive and Negative Target Polarization
Helcode # | Negative Target Polarization | Positive Target Polarization |
1 h>0 | ![]() |
![]() |
2 h<0 | ![]() |
![]() |
3 | ![]() |
![]() |
4 | ![]() |
![]() |
Helicity Difference Plots for Pt>0 and Pt<0
Helicity Difference | Negative Target Polarization | Positive Target Polarization |
h1-h4 | ![]() |
![]() |
h3-h2 | ![]() |
![]() |
5-01-2009
Target and Beam Polarization are positive
Helcode # | Negative Beam Torus | Positive Beam Torus |
1 h>0 | ![]() |
![]() |
2 h<0 | ![]() |
![]() |
3 | ![]() |
![]() |
4 | ![]() |
![]() |
Target Polarization Positive and Beam Polarization Negative
Helcode # | Negative Beam Torus | Positive Beam Torus |
1 h>0 | No Data | ![]() |
2 h<0 | No Data | ![]() |
3 | No Data | ![]() |
4 | No Data | ![]() |
Inclusive Histograms For Invariant Mass
Invariant Mass Histograms for Each Sector
All helicities
Helcode=1
3/20/09
1.) plot Wdiff
2.) plot PE using Osipenko/Josh cuts
06/6/09
Invariant Mass
Difference of Invariant Mass for two differnet cuts:
Run Number | EC Cuts+ requiring pion | OSI Cuts | EC Cuts | |
26991 | ![]() |
![]() |
On x-axis of FC difference between the "+" heliciy FC and the "-" helicity FC.
Run Number | W difference | FC difference | End of Run sum |
26991 | ![]() |
150px | 0.00354260538 | 0.00001050400
26994 | ![]() |
![]() |
0.00367 | 0.00001088263
26993 | ![]() |
![]() |
0.002559223 | 0.00001120796
26992 | ![]() |
![]() |
0.003781 | 0.00001090044
26990 | ![]() |
![]() |
0.00331986321 | 0.00001203387
26989 | ![]() |
![]() |
0.00303841557 | 0.00001267152
26988 | ![]() |
![]() |
0.00380169243 | 0.00001097470
26987 | ![]() |
![]() |
0.00280163240 | 0.00001515270
26986 | ![]() |
![]() |
0.00352882616 | 0.00000048897
26979 | ![]() |
![]() |
-0.00373104126 | 0.00001531706
26965 | ![]() |
![]() |
0.00454140439 | 0.00001534923
26964 | ![]() |
![]() |
0.00509434283 | 0.00001557226
26963 | ![]() |
![]() |
0.00405285155 | 0.00001575049
26961 | ![]() |
![]() |
0.00507456102 | 0.00001682744
26959 | ![]() |
![]() |
0.00523761694 | 0.00001488890
26958 | ![]() |
![]() |
0.00444205478 | 0.00001577510
26956 | ![]() |
![]() |
0.00504401620 | 0.00001565456
26955 | ![]() |
![]() |
0.00559913829 | 0.00001425736
26954 | ![]() |
![]() |
0.00494690728 | 0.00001443107
26953 | ![]() |
![]() |
0.00562598448 | 0.00001525797
26952 | ![]() |
![]() |
0.00485295834 | 0.00001293033
26951 | ![]() |
![]() |
0.00545485906 | 0.00001558637
26947 | ![]() |
![]() |
0.00465697160 | 0.00001144285
26945 | ![]() |
![]() |
-0.00556456389 | 0.00001389870
26943 | ![]() |
![]() |
-0.00656109472 | 0.00001540342
26942 | ![]() |
![]() |
-0.00669169106 | 0.00001526771
26941 | ![]() |
![]() |
-0.00676460417 | 0.00001100372
26940 | ![]() |
![]() |
-0.00643597022 | 0.00001397207
26939 | ![]() |
![]() |
-0.00650047456 | 0.00001405001
26938 | ![]() |
![]() |
-0.00632630313 | 0.00001411839
26937 | ![]() |
![]() |
-0.00533169794 | 0.00001417768
26934 | ![]() |
![]() |
-0.00601497156 | 0.00001422560
26933 | ![]() |
![]() |
-0.00586540500 | 0.00001414938
26932 | ![]() |
![]() |
-0.00587687192 | 0.00001383218
26931 | ![]() |
![]() |
-0.00630232566 | 0.00001495053
26930 | ![]() |
![]() |
-0.00684205010 | 0.00001541629
26929 | ![]() |
![]() |
-0.00521666944 | 0.00001555256
26928 | ![]() |
![]() |
-0.00682185316 | 0.00001536552
26927 | ![]() |
![]() |
-0.00599647483 | 0.00001538040
26926 | ![]() |
![]() |
-0.00649932378 | 0.00001302331
26925 | ![]() |
![]() |
-0.00575464099 | 0.00001530219
27079 | ![]() |
![]() |
-0.01025869470 | 0.00002322298
27078 | ![]() |
![]() |
-0.01128036266 | 0.00002135573
27075 | ![]() |
![]() |
-0.01037443017 | 0.00002113646
27109 | ![]() |
![]() |
-0.00876887465 | 0.00002411331
27107 | ![]() |
![]() |
0.01044530752 | 0.00002188631
27116 | ![]() |
![]() |
0.00173242954 | 0.00003084415
27112 | ![]() |
![]() |
-0.01142682761 | 0.00002505827
27111 | ![]() |
![]() |
-0.00872760886 | 0.00002117268
27128 | ![]() |
![]() |
0.00193441756 | 0.00002177434
27127 | ![]() |
![]() |
0.00215712098 | 0.00002186032
27124 | ![]() |
![]() |
0.00309070808 | 0.00002235601
27139 | ![]() |
![]() |
-0.00288862444 | 0.00002683943
27138 | ![]() |
![]() |
-0.00061608634 | 0.00002396188
27137 | ![]() |
![]() |
-0.00275066778 | 0.00002150471
27136 | ![]() |
![]() |
-0.00239423237 | 0.00002151354
27134 | ![]() |
![]() |
-0.00355581434 | 0.00002051114
27133 | ![]() |
![]() |
-0.00252193724 | 0.00002181781
27132 | ![]() |
![]() |
0.00096332202 | 0.00002224348
27143 | ![]() |
![]() |
-0.00210486278 | 0.00002838738
27141 | ![]() |
![]() |
-0.00301990556 | 0.00002515365
27160 | ![]() |
![]() |
0.00171264744 | 0.00002170610
27161 | ![]() |
![]() |
0.00224287304 | 0.00002374488
27162 | ![]() |
![]() |
0.00118844445 | 0.00002480837
27166 | ![]() |
![]() |
0.00077237006 | 0.00002247548
27167 | ![]() |
![]() |
0.00216041281 | 0.00002188669
27168 | ![]() |
![]() |
0.00083650625 | 0.00002173328
27170 | ![]() |
![]() |
0.00151247511 | 0.00002430185
27175 | ![]() |
![]() |
-0.01217485668 | 0.00002235229
27176 | ![]() |
![]() |
-0.01049635167 | 0.00002127680
27177 | ![]() |
![]() |
-0.01147445288 | 0.00002149007
27179 | ![]() |
![]() |
-0.01025340153 | 0.00002206557
27180 | ![]() |
![]() |
-0.00868272418 | 0.00002169057
27181 | ![]() |
![]() |
-0.00973324188 | 0.00002374079
27182 | ![]() |
![]() |
-0.00983862460 | 0.00002233926
27183 | ![]() |
![]() |
-0.01901615252 | 0.00002135060
27186 | ![]() |
![]() |
0.01079090635 | 0.00002093983
27187 | ![]() |
![]() |
0.01155519076 | 0.00002157075
27188 | ![]() |
![]() |
0.01086898605 | 0.00002089859
27190 | ![]() |
![]() |
0.01181266490 | 0.00002159430
27192 | ![]() |
![]() |
-0.00988459637 | 0.00002151795
27193 | ![]() |
![]() |
-0.01047643036 | 0.00002159742
27194 | ![]() |
![]() |
-0.01185520003 | 0.00002134810
NPHE
To find out pion contamination in the electron sample i used Osipenko geometrical cuts. The number of photoelectrons before and after osipenko cuts are shown below:
No cuts | OSI Cuts |
For different fits:
06/11/09
Pion Contamination
No cuts | OSI Cuts (Gauss(0)+Landau(3)+Gauss(6)) | OSI Cuts (Gauss(0)+Gauss(3)) | OSICuts + NPHE>2.5 (Gauss) |
OSICuts (Gauss(0)+Landau(3)+Gauss(6))
Assuming that the two gaussians represent number of photoelectrons and landau number of photons produced by high energy pions, the ratio of number of pions over the sum of electrons and pion in the electron candidate sample can be calculated in the following way:
- OSIcut
- OSICut+NPHE>2.5
OSICuts (Gauss(0)+Gauss(3))
In case of only two gaussians, the number of photoelectrons produced by pions is described by Gauss(0) and the number of photoelectrons created by electrons is Gauss(3). Pion contamination is calculated below for both cases, without and with NPHE>2.5 cut.
- OSICut
- With NPHE>2.5 Cut
Number of Events after NPHE>2.5 Cut
Counts in FCup
6/12/09
1.) Improve Chi^2 in NPe fits.
2.) Calculate uncertainty in pion contamination measurement by changing mean and widths according to fit error.
3.) Pulse pair FC asymmetry, and End of Run accumulated FC asym.
pulse pair
End of Run sum
4.) Determine semi-inclusive statistic as function of X
Uncertainty in Pion Contamination
Maximum
Minimum
Pion Contamination
It appears that pion contamination in electron sample is 9.63 %
0.01 % before nphe cut and after nphe>2.5 cut contamination is about 4.029% 0.003.X_bjorken
- 1). alldataOSICuts_X.root - OSICuts applied.
- 2). alldataOSICuts_X_epx.root - OSICuts applied and electron and pion are required.
- 3). alldataOSICuts_X_epxnphe.root - OSICut and nphe>2.5 cuts applied and electron and pion are required.
- 4). alldataX_epxwithoutcuts - No cuts, electron and pion required.
- Number of Events after cuts
No Cuts | OSI Cuts | OSI+NPHE>2.5 Cuts |
68.5 % | 57.5 % |
- Error Calculation
Tthe error in the asymmetry measurement would be
X_b | X_b Asymmetry | Error | ||
0.1 | 0.00087251693 | |||
0.2 | 0.0008507530911145 | |||
0.3 | 1.0691459e-03 | |||
0.4 | 0.0014004231 | |||
0.5 | 0.0018665742 | |||
0.6 | 0.0016477095 | |||
0.7 | 0.0022190018 | |||
0.8 | 0.00291609 | |||
0.9 | 0.003592967 | |||
1 | 0.0040928449 |
I am pretty sure X_{BJ} > 0.8 is not possible with our data set
Electron theta angle and cuts
- electron theta angle for different X_b
X_b when
Number of Events for X_b>0.8
plot the vertex of the above hits with X>0.8
change below to log plots so we can see where XBj stops
10/23/09
After Months of working on detectors and writing thesis proposal it is now time to start doing some physics.
1.) Determine how pion contamination uncertainty changes when you change fit parameters by 1 S.D., 2 S.D., and 3 S.D.
2.) FC asymm plots
3.) Vertex plot for X > 0.8 events.
4.) Now that we have good electron cuts. Plot statistics for Pion cuts.
5.) After pion cuts we start looking add paddle efficiencies so we can subtract sem-inclusive rates using individual paddles but opposite magnetic fields.
Xbjorken
Vertex plot for X > 0.8 events and others
I chose 1<Q^2<4 cut because we used it to plot phi angle in cm frame vs relative rate to compare with the results in paper.
Cuts | X_bjorken | Vertex X | Vertex Y | Vertex Z | |
OSI Cuts + EC Cuts | ![]() |
![]() |
![]() |
![]() |
![]() |
OSI Cuts + EC Cuts + X_b>0.8 | ![]() |
![]() |
![]() |
![]() |
![]() |
OSI Cuts + EC Cuts + X_b<0.8 | ![]() |
![]() |
![]() |
![]() |
![]() |
OSI Cuts + EC Cuts + 1<Q^2<4 | ![]() |
![]() |
![]() |
![]() |
![]() |
Cuts | The scattered electron energy | electron scattering angle |
![]() |
![]() | |
![]() |
![]() |
FC Asymmetry
FC Asymmetry plot using the following method : End of Run sum
Pion contamination
Determine how pion contamination uncertainty changes when you change fit parameters by 1 S.D., 2 S.D., and 3 S.D.
Pion contamination(3 S.D.) in electron sample is 9.645 %
0.025%.It doesnt really change from using 1 S.D.
Pion Statistics
Before and after cuts the plot of EC_tot/P vs nphe(for pions)
10/30/09
After Months of working on detectors and writing thesis proposal it is now time to start doing some physics.
1.) Determine how pion contamination uncertainty changes when you change fit parameters by 1 S.D., 2 S.D., and 3 S.D.
2.) Do pulse pair FC asymm plot
3.) Check program's calculation of event with X > 0.8 events. and compare to similar event with X < 0.8
4.) Use statistics for Pion cuts to estimate SIDIS statistical error -vs- Xbj
5.) After pion cuts we start looking add paddle efficiencies so we can subtract sem-inclusive rates using individual paddles but opposite magnetic fields.
1.)
1.) Determine how pion contamination uncertainty changes when you change fit parameters by 1 S.D., 2 S.D., and 3 S.D.
In case of 10 S.D. :
&&3.)
I suspect the X_b >0.8 event below are pions mis-identified as electrons To figure out. Write down event number for events below as well as run number and file name. The use path length and Scintillator TDC time to determine beta under assumption that particle is a pion. Does the momentum and energy make sense? Download the cooked data file from JLab for these events so we can use CED to look at them and bosdump to look at the reconstruction.
- 1
Ebeam=5736 IBeam=4.2 ITorus=2248 ITarg=122 BeamPol=0.71 TargetPol=-0.67 BadRun=0 Target=18 PolPlate=0 Version=2 Prescalers:0:0:0:0:0:0:0 dump=13 W= 1.3504 Q= 4.78723 final electron energy= 2.6823 initial electron energy= 5.736 electron theta angle= 32.3896
- 2
Ebeam=5736 IBeam=4.2 ITorus=2248 ITarg=122 BeamPol=0.71 TargetPol=-0.67 BadRun=0 Target=18 PolPlate=0 Version=2 Prescalers:0:0:0:0:0:0:0 dump=13 W= 1.41085 Q= 5.1186 final electron energy= 2.41678 initial electron energy= 5.736 electron theta angle= 35.3749
- 3
Ebeam=5736 IBeam=4.2 ITorus=2248 ITarg=122 BeamPol=0.71 TargetPol=-0.67 BadRun=0 Target=18 PolPlate=0 Version=2 Prescalers:0:0:0:0:0:0:0 dump=13 W= 1.2575 Q= 4.83661 final electron energy= 2.7851 initial electron energy= 5.736 electron theta angle= 31.9378
- 1
W= 3.07188 Q= 0.229403 final electron energy= 1.0543 initial electron energy= 5.736 electron theta angle= 11.177
- 2
hit return for next event, q to quit: W= 2.48202 Q= 1.382 final electron energy= 2.18587 initial electron energy= 5.736 electron theta angle= 19.1106
- 3
hit return for next event, q to quit: W= 2.92788 Q= 0.274895 final electron energy= 1.49046 initial electron energy= 5.736 electron theta angle= 10.2878
4.)
&& | && | && | && |
![]() |
![]() |
![]() |
![]() |
1-12-09
Root files: alldatasector26990_4.root, alldatasector26990_5.root, alldatasector27113_4.root, alldatasector27113_5.root.
9/13/09
1.) Determine how pion contamination uncertainty changes when you change fit parameters.
Fit parameters | Pion Contamination |
1 S. D. | 9.63 % | 0.01 %
3 S. D. | 9.645 % | 0.025 %
10 S. D. | 9.446 % | 0.0233 %
2.) Do pulse pair FC asymm plot
I did it for one file(dst27113_00.B00) and it was zero.
3.) Check program's calculation of event with X > 0.8 events. and compare to similar event with X < 0.8
I suspect the X_b >0.8 event below are pions mis-identified as electrons To figure out. Write down event number for events below as well as run number and file name. The use path length and Scintillator TDC time to determine beta under assumption that particle is a pion. Does the momentum and energy make sense? Download the cooked data file from JLab for these events so we can use CED to look at them and bosdump to look at the reconstruction.
Calculation is right, need to check CED, but dont have it on daq.
4.) Use statistics for Pion cuts to estimate SIDIS statistical error -vs- Xbj
Insert table with X bj, number of reconstructed pions, statistical error.
no cut
root alldatasector27113_5_1.root
root [9] .p X_bjorken->GetBinError(2); (const Double_t)3.50713558335003626e+01 root [10] .p X_bjorken->GetBinContent(2); (const Double_t)1.23000000000000000e+03
root [11] .p X_bjorken->GetBinContent(3); (const Double_t)1.85200000000000000e+03 root [12] .p X_bjorken->GetBinError(3); (const Double_t)4.30348695827000256e+01
root [13] .p X_bjorken->GetBinError(4); (const Double_t)3.06431068920891256e+01 root [14] .p X_bjorken->GetBinContent(4); (const Double_t)9.39000000000000000e+02
root [15] .p X_bjorken->GetBinContent(5); (const Double_t)3.68000000000000000e+02 root [16] .p X_bjorken->GetBinError(5); (const Double_t)1.91833260932508765e+01
(const Double_t)1.91833260932508765e+01 root [17] .p X_bjorken->GetBinError(6); (const Double_t)1.14017542509913792e+01 root [18] .p X_bjorken->GetBinContent(6); (const Double_t)1.30000000000000000e+02
root [19] .p X_bjorken->GetBinContent(7); (const Double_t)4.10000000000000000e+01 root [20] .p X_bjorken->GetBinError(7); (const Double_t)6.40312423743284853e+00
root [21] .p X_bjorken->GetBinError(8); (const Double_t)3.74165738677394133e+00 root [22] .p X_bjorken->GetBinContent(8); (const Double_t)1.40000000000000000e+01
root [23] .p X_bjorken->GetBinContent(9); (const Double_t)5.00000000000000000e+00 root [24] .p X_bjorken->GetBinError(9); (const Double_t)2.23606797749978981e+00
root [25] .p X_bjorken->GetBinError(10); (const Double_t)1.41421356237309515e+00 root [26] .p X_bjorken->GetBinContent(10); (const Double_t)2.00000000000000000e+00
with cut
root alldatasector27113_5.root
root [3] .p X_bjorken->GetBinError(2); (const Double_t)2.89827534923788761e+01 root [4] .p X_bjorken->GetBinContent(2); (const Double_t)8.40000000000000000e+02
root [5] .p X_bjorken->GetBinError(3); (const Double_t)3.77491721763537456e+01 root [6] .p X_bjorken->GetBinContent(3); (const Double_t)1.42500000000000000e+03
root [7] .p X_bjorken->GetBinError(4); (const Double_t)2.82488937836510701e+01 root [8] .p X_bjorken->GetBinContent(4); (const Double_t)7.98000000000000000e+02 root [9] .p X_bjorken->GetBinError(5); (const Double_t)1.81107702762748346e+01 root [10] .p X_bjorken->GetBinContent(5); (const Double_t)3.28000000000000000e+02
root [11] .p X_bjorken->GetBinError(6); (const Double_t)1.04880884817015154e+01 root [12] .p X_bjorken->GetBinContent(6); (const Double_t)1.10000000000000000e+02
root [13] .p X_bjorken->GetBinError(7); (const Double_t)6.24499799839839831e+00 root [14] .p X_bjorken->GetBinContent(7); (const Double_t)3.90000000000000000e+01
root [15] .p X_bjorken->GetBinError(8); (const Double_t)3.60555127546398912e+00 root [16] .p X_bjorken->GetBinContent(8); (const Double_t)1.30000000000000000e+01
root [17] .p X_bjorken->GetBinError(9); (const Double_t)1.73205080756887719e+00 root [18] .p X_bjorken->GetBinContent(9); (const Double_t)3.00000000000000000e+00
root [19] .p X_bjorken->GetBinError(10); (const Double_t)0.00000000000000000e+00 root [20] .p X_bjorken->GetBinContent(10); (const Double_t)0.00000000000000000e+00
root [21] .p X_bjorken->GetBinError(11); (const Double_t)0.00000000000000000e+00 root [22] .p X_bjorken->GetBinContent(11); (const Double_t)0.00000000000000000e+00
root [23] .p X_bjorken->GetBinError(12); (const Double_t)0.00000000000000000e+00 root [24] .p X_bjorken->GetBinContent(12); (const Double_t)0.00000000000000000e+00
Error | |
0.1 | 0.034503278 |
0.2 | 0.026490647 |
0.3 | 0.035399616 |
0.4 | 4.255675067 |
0.5 | 0.095346259 |
0.6 | 0.160128154 |
0.7 | 0.277350098 |
0.8 | 0.577350269 |
5.) After pion cuts we start looking add paddle efficiencies so we can subtract sem-inclusive rates using individual paddles but opposite magnetic fields.
Your B-field sign change does effect paddle distribution?
The table below represents the distribution of electrons and pions on the scintillator paddles using the reaction
e(p/d,e')\pi X
File number | electron | electron | ||
26990, B<0 | ![]() |
![]() |
![]() |
![]() |
27113, B>0 | ![]() |
![]() |
![]() |
![]() |
- 1.) 7< Sector_paddle <11 - (B>0, ) - 15.3% && (B<0, ) - 10.9%
- 2.) 25< Sector_paddle <29 - (B>0, ) - 7.775% && (B<0, ) - 10.97%
&&
Using Two runs: 26990(NH3, -2250) and 27124(ND3, +2250)
root files: alldatasector27124_4.root && alldatasector27124_5.root
root files: alldatasector26990_4.root && alldatasector26990_5.root
alldatasector26990_4.root
Pion Paddle Number
Negative Torus
Using runs with NH3 target
Detected particles in the final state | Pion Paddle Number | X_b vs pion paddle number | Chosen pion paddle number |
&& | ![]() |
![]() |
7 |
&& | ![]() |
![]() |
27 |
Detected particles in the final state and chosen pion paddle number | paddle number | vs paddle number | vs paddle number when | vs paddle number when |
&& , | ![]() |
![]() |
![]() |
![]() |
&& , | ![]() |
![]() |
![]() |
![]() |
Positive Torus
Using runs with NH3 target
Detected particles in the final state | X_b vs pion paddle number | Chosen pion paddle number |
&& | ![]() |
27 |
&& | ![]() |
7 |
Detected particles in the final state and chosen pion paddle number | paddle number | vs paddle number | vs paddle number when | vs paddle number when |
&& , | ![]() |
![]() |
![]() |
![]() |
&& , | ![]() |
![]() |
![]() |
![]() |
2/10/2010
root file | reaction | W vs | # events for <1.232 | ||||
1 | B<0, pi^-=27 && e^-=11 | ![]() |
![]() |
![]() |
![]() |
![]() |
9868 |
2 | B>0, pi^+=27 && e^-=11 | ![]() |
![]() |
![]() |
![]() |
![]() |
412 |
3 | B>0, pi^+=27 && e^-=7 | ![]() |
![]() |
![]() |
![]() |
![]() |
793 |
4 | B>0, pi^-=7 && e^-=11 | ![]() |
![]() |
![]() |
![]() |
![]() |
400 |
5 | B<0, pi^+=7 && e-=11 | ![]() |
![]() |
![]() |
![]() |
![]() |
9406 |
Rate differences
Which paddle do we expect the Pion to hit if we flip the direction of the B-Field?
Only using Certain Paddles
or
Looking at Ratio_3 and Ratio_4 one can make a conclusion that we are detecting ~ % more type hadrons.
Choosing events Below 1.232 GeV && Certain paddle numbers
22-02-2010
- NH3 Target, two file lists: NH3Bn.list (B<0, 26994-26983) && NH3Bp.list (B>0, 27074-27079)
no paddle cuts
- A.) B>0
1.) B>0,
&& , NH3Bp1_1.root2.) B>0,
&& , NH3Bp2_1.root- B.) B<0
1.) B<0,
&& , NH3Bn1_1.root2.) B<0,
&& , NH3Bn2_1.root
Paddle Cuts
Again, choosing events below 1.232 GeV, applying cuts, and plotting Histograms for certain electron and pion paddles.
_vs_ , , Fcup && .
- A.) B>0
1.) B>0,
&& , NH3Bp1.root2.) B>0,
&& , NH3Bp2.root- B.) B<0
1.) B<0,
&& , NH3Bn1.root2.) B<0,
&& , NH3Bn2.rootFile | W vs | |||
NH3Bp1.root | ![]() |
![]() |
![]() |
200px |
NH3Bp2.root | ![]() |
![]() |
![]() |
200px |
NH3Bn1.root | ![]() |
![]() |
![]() |
200px |
NH3Bn2.root | ![]() |
![]() |
![]() |
200px |
Now you need to cut on. The above suggests that looking at 1 < < 2 GeV/c^2 may be a good starting point.
The idea is to compare the outbending (B<0)
rate in paddle 27 to the inbending(B>0) rate in paddle 7 when 1 < < 2. For the same kinematics the rates should be the same because the reaction is the same. Do the same for to see if it is consistent. This will show much flipping the magnet polarity impacts the rate measurement. Are the differences due to the B-field change or the scintillator efficiency, or to the track reconstruction? Our goal is to argue that the detector has the same efficiency for detecting and in the same scintillator when the Torus B-field direction is flipped.1 < < 2
File | W vs | ||
NH3Bp1.root | 200px | ![]() |
![]() |
NH3Bp2.root | 200px | ![]() |
![]() |
NH3Bn1.root | 200px | ![]() |
![]() |
NH3Bn2.root | 200px | ![]() |
![]() |
bin | Bp1/Bn1 | Bp2/Bn2 |
0.1 | 2.38 | 0.2991.09 | 0.405
0.2 | 1.29 | 0.1883.59 | 0.215
0.3 | 1.38 | 0.2424.6 | 0.284
0.4 | 1.62 | 1.023.76 | 1.28
Angle vs Paddle Number Distribution
# | angle vs paddle number | angle vs paddle number |
B>0, | &&![]() |
![]() |
B>0, | &&![]() |
![]() |
B<0, | &&![]() |
![]() |
B<0, | &&![]() |
![]() |
26/04/2010
NH3Bn positive pion runs
7.root - 27.root
pion paddle number | x_bj=0.1 | x_bj=0.2 | x_bj=0.3 | x_bj=0.4 |
1 | 10 | 3.1638 | 6.1620 | 4.472 | 1.4
2 | 14 | 3.760 | 7.728 | 5.30 |
3 | 20 | 4.593 | 9.648 | 6.93 | 1.7
4 | 26 | 5.187 | 9.353 | 7.35 | 2.2
5 | 24 | 4.994 | 9.742 | 6.56 | 2.4
6 | 30 | 5.5125 | 1.179 | 8.97 | 2.6
8 | 16 | 4102 | 1065 | 8.14 | 2
9 | 19 | 4.396 | 9.848 | 6.93 | 1.7
10 | 23 | 4.898 | 9.957 | 7.52 | 1.4
11 | 16 | 471 | 8.438 | 6.22 | 1.4
12 | 20 | 4.585 | 9.253 | 7.36 | 2.5
13 | 13 | 3.673 | 8.542 | 6.55 | 2.2
14 | 19 | 4.375 | 8.738 | 6.23 | 1.7
15 | 15 | 3.962 | 7.925 | 52 | 1.4
16 | 22 | 4.758 | 7.642 | 6.50 |
17 | 5 | 2.240 | 6.323 | 4.84 | 2
18 | 10 | 3.233 | 5.718 | 4.22 | 1.4
19 | 7 | 2.627 | 5.221 | 4.51 | 1
20 | 3 | 1.734 | 5.813 | 3.60 |
21 | 3 | 1.716 | 49 | 30 |
22 | 2 | 1.410 | 3.22 | 1.40 |
23 | 0 | 2 | 1.43 | 1.71 | 1
24 | 0 | 1 | 11 | 10 |
NH3Bp positive pion runs
#p.root
pion paddle number | x_bj=0.1 | x_bj=0.2 | x_bj=0.3 | x_bj=0.4 |
4 | 21 | 4.615 | 3.92 | |
5 | 39 | 58 | 18 | |
6 | 56 | 91 | 49 | |
7 | 90 | 110 | 82 | 5 |
8 | 81 | 155 | 78 | 3 |
9 | 68 | 8.1139 | 1285 | 9.24 | 2
10 | 83 | 9.1181 | 1388 | 9.48 | 2.8
11 | 102 | 10164 | 1396 | 9.88 | 2.8
12 | 103 | 10.1188 | 13.7122 | 118 | 2.8
13 | 85 | 9.2203 | 14.2132 | 11.516 | 4
14 | 105 | 10.2219 | 14.8120 | 10.911 | 3.3
15 | 116 | 10.8192 | 13.8113 | 10.68 | 2.8
16 | 91 | 9.5208 | 14.4134 | 11.69 | 3
17 | 98 | 9.9187 | 13.7112 | 10.69 | 3
18 | 106 | 10.3159 | 12.6121 | 117 | 2.6
19 | 91 | 9.5166 | 12.9107 | 10.39 | 3
20 | 83 | 9.1138 | 11.790 | 9.57 | 2.6
21 | 81 | 9167 | 12.9110 | 10.511 | 3.3
22 | 87 | 9.3164 | 12.884 | 9.25 | 2.2
23 | 77 | 8.898 | 9.973 | 8.56 | 2.4
24 | 86 | 9.3131 | 11.481 | 96 | 2.4
25 | 96 | 9.8185 | 13.692 | 9.614 | 3.7
26 | 87 | 9.3147 | 12.197 | 9.88 | 2.8
27 | 72 | 8.5132 | 11.582 | 9.16 | 2.4
28 | 64 | 8131 | 11.473 | 8.510 | 3.2
29 | 46 | 6.9101 | 1053 | 7.52 | 1
30 | 13 | 3.514 | 3.818 | 4.81 | 1
06-02-2010
Electron Efficiency
Chosen electron paddles are following for the positive and negative paddles respectively: 7 and 11.
electroneffbp.root && electroneffbn.root
B>0
TH1.Print Name = Qsqrd, Entries= 323638, Total sum= 323634 fSumw[0]=0, x=-0.2 fSumw[1]=0, x=-0.1 fSumw[2]=0, x=9.71039e-18 fSumw[3]=0, x=0.1 fSumw[4]=3, x=0.2 fSumw[5]=21, x=0.3 fSumw[6]=93, x=0.4 fSumw[7]=285, x=0.5 fSumw[8]=575, x=0.6 fSumw[9]=1148, x=0.7 fSumw[10]=2478, x=0.8 fSumw[11]=9402, x=0.9 fSumw[12]=24380, x=1 fSumw[13]=31648, x=1.1 fSumw[14]=29967, x=1.2 fSumw[15]=27864, x=1.3 fSumw[16]=27157, x=1.4 fSumw[17]=26820, x=1.5 fSumw[18]=25603, x=1.6 fSumw[19]=25027, x=1.7 fSumw[20]=24470, x=1.8 fSumw[21]=23512, x=1.9 fSumw[22]=20320, x=2 fSumw[23]=13453, x=2.1 fSumw[24]=6738, x=2.2 fSumw[25]=2043, x=2.3 fSumw[26]=449, x=2.4 fSumw[27]=119, x=2.5 fSumw[28]=41, x=2.6 fSumw[29]=13, x=2.7 fSumw[30]=5, x=2.8 fSumw[31]=4, x=2.9
B<0
TH1.Print Name = Qsqrd, Entries= 716018, Total sum= 716011
fSumw[0]=0, x=-0.2 fSumw[1]=0, x=-0.1 fSumw[2]=180, x=9.71039e-18 fSumw[3]=112762, x=0.1 fSumw[4]=160348, x=0.2 fSumw[5]=91665, x=0.3 fSumw[6]=62692, x=0.4 fSumw[7]=46135, x=0.5 fSumw[8]=35169, x=0.6 fSumw[9]=28473, x=0.7 fSumw[10]=23810, x=0.8 fSumw[11]=20763, x=0.9 fSumw[12]=18452, x=1 fSumw[13]=16021, x=1.1 fSumw[14]=14494, x=1.2 fSumw[15]=12731, x=1.3 fSumw[16]=11610, x=1.4 fSumw[17]=10422, x=1.5 fSumw[18]=9437, x=1.6 fSumw[19]=8929, x=1.7 fSumw[20]=8149, x=1.8 fSumw[21]=7504, x=1.9 fSumw[22]=6209, x=2 fSumw[23]=4557, x=2.1 fSumw[24]=2948, x=2.2 fSumw[25]=1625, x=2.3 fSumw[26]=659, x=2.4 fSumw[27]=195, x=2.5 fSumw[28]=50, x=2.6 fSumw[29]=18, x=2.7 fSumw[30]=4, x=2.8 fSumw[31]=7, x=2.9
Media:electronefficiencyratioBp7Bn11.txt
Now plot efficiency as function of X_{BJ} and W < 1232 and require pion.
Positive Pion Efficiency dependence on
Pion and electron both required.
W<1232 and
X_bj | B_n/B_p Rates |
---|---|
0.14 | 0.25 | 0.55
0.15 | 0.74 | 0.27
0.17 | 1.07 | 0.18
0.19 | 1.3 | 0.13
0.2 | 1.4 | 0.14
Negative Pion Efficiency dependence on
Pion and electron both required(e_sector=7 for B>0 && e_sector=11 for B<11).
B_p/B_n Rates | |
---|---|
0.2 | 0.004 | 0.55
0.3 | 0.017 | 0.5
0.4 | 0.069 | 0.6
0.5 | 0.0262 | 0.6
0.6 | 0.039 | 0.5
0.7 | 0.1 | 0.64
0.8 | 0.055 | 0.52
0.9 | 0.259 | 0.52
1 | 1.232 | 0.52
1.1 | 3.96 | 0.8
8/13/10
1.) Change Osipenko cuts to maximize electrons when B <0 but still minimize impact of negative pion contamination. Look at effects on Npe distribution.
Insert current number of electron events that are removed by the Osipenko cut for B<0. Compare it to event removed by other cuts.
2.) Schedule Prelim exam.
Shropshire has replaced cole.
Members are: Forest, Fisher, Shropshire, Dale, Tatar(?)
Ask Dustin McNulty
1.) [1]
"Original cut parameters generated by Osipenko et.al. were not very efficient for especially outbending data of eg1b experiment. The loss of electrons was substantial. For inbending data, loss of electrons were at acceptable level. To gain some electrons back we generated new cut parametes that will specifically work better for outbending data. Also we slightly adjusted the cut parameters for inbending data for some sectors and segments."
2.) Upgraded Proposal defense presentation(includes event display) File:TamarProposalP 1.pdf
11/10/10
DTS files used for analysis.
Media:ND3Bn.txt
Media:ND3Bp.txt
Media:NH3Bn.txt
Media:NH3Bp.txt
positive
negative
What are the cuts for the above histogram?
pion, OSI, EC
11/30/10
DST ntuple suggestions
- Event number and run number should be recorded. Run number is in RUNINFO. Event number should be in the event packet.
- Create variable called helicity and fill it with absolute helicity.
GEM detector
- order mylar and copper tape., 1" wide, $20 worth of each
- check DPO 4104 see if working properly
- find 10 frames for Qweak GEM foils (or order more)
- check gas supply
12/6/10
DST ntuple
Run number looks good.
PbPt values are all non-zero now.
1) Some of the TORUS values are zero when they should be positive?
Doesnt matter. There are totally four files: ND3_target+Torus_positive, ND3_target+Torus_negative, NH3_target+Torus_positive and NH3_target+Torus_negative. So not an issue.
2.) Electrons have less than 0.25 GeV energy?
Still dont know.
3.) ASYM=HWP*LINAC*P_T is in the root file.
4.) Where are the FC normalization histograms
12/20/10
DST
1.) Looks like a particle ID problem for outbending (B<0) negative pions.
Calculate the missing mass for the and stor it in M_X. (included and corrected in NTUPLE)
Redo all the ntuples.
All ntuples are done.
2.) is run 27048 OK (no target run(empty)), corrected for both target runs
3.) Current quarks(the core of the constituent quark without the gluons and sea quarks(covering). The mass of the current quarks(up and down) is 5-10 MeV), light cone?
pion momentum for different torus settings and targets
pion paddle number for different torus settings
Need a before and after cuts histogram with stats to see number of events dropped