Difference between revisions of "Neutron Polarimeter"

From New IAC Wiki
Jump to navigation Jump to search
Line 23: Line 23:
 
  <math> p^{\mu}_{\gamma} + p^{\mu}_D = p^{\mu}_p + p^{\mu}_n \Rightarrow </math>
 
  <math> p^{\mu}_{\gamma} + p^{\mu}_D = p^{\mu}_p + p^{\mu}_n \Rightarrow </math>
  
  <math> p^{\mu\ 2}_p = (p^{\mu}_{\gamma} + p^{\mu}_D - p^{\mu}_n)^2 =  
+
  <math> p^{\mu\ 2}_p = \left(p^{\mu}_{\gamma} + p^{\mu}_D - p^{\mu}_n\right)^2 =  
  
 
  (p^{\mu}_{\gamma})^2 + (p^{\mu}_D)^2 + (p^{\mu}_n)^2 + 2p^{\mu}_{\gamma}p^{\mu}_D - 2p^{\mu}_n(p^{\mu}_{\gamma} + p^{\mu}_D) </math>
 
  (p^{\mu}_{\gamma})^2 + (p^{\mu}_D)^2 + (p^{\mu}_n)^2 + 2p^{\mu}_{\gamma}p^{\mu}_D - 2p^{\mu}_n(p^{\mu}_{\gamma} + p^{\mu}_D) </math>

Revision as of 21:29, 5 June 2010

Go Back


Relativistic kinematic

energy dependence of outcoming neutron versus energy of incoming photons

Collision.png
[math] E = T + m[/math]
[math] E = p^2 + m^2[/math]

writing four-vectors:

[math] p_{\gamma} = \left( T_{\gamma},\ T_{\gamma},\ 0,\ 0  \right) [/math] 
[math] p_D     = \left( m_D,\ 0,\ 0,\ 0  \right) [/math] 
[math] p_{n} = \left( E_n,\ p_n\cos(\Theta_n),\ p_n\sin(\Theta_n),\ 0  \right) [/math] 
[math] p_{p} = \left( E_p,\ p_p\cos(\Theta_p),\ p_p\sin(\Theta_p),\ 0  \right) [/math] 


Doing four-vector algebra:

[math] p^{\mu}_{\gamma} + p^{\mu}_D = p^{\mu}_p + p^{\mu}_n \Rightarrow [/math]
[math] p^{\mu\ 2}_p = \left(p^{\mu}_{\gamma} + p^{\mu}_D - p^{\mu}_n\right)^2 = 

 (p^{\mu}_{\gamma})^2 + (p^{\mu}_D)^2 + (p^{\mu}_n)^2 + 2p^{\mu}_{\gamma}p^{\mu}_D - 2p^{\mu}_n(p^{\mu}_{\gamma} + p^{\mu}_D) [/math]


[math] m_p^2 = m_y^2(=0) + m_D^2 + m_n^2 [/math] 


</math>



Go Back