Difference between revisions of "Neutron Polarimeter"

From New IAC Wiki
Jump to navigation Jump to search
Line 16: Line 16:
 
  <math> p_D    = \left( m_D,\ 0,\ 0,\ 0  \right) </math>  
 
  <math> p_D    = \left( m_D,\ 0,\ 0,\ 0  \right) </math>  
 
  <math> p_{n} = \left( E_n,\ p_n\cos(\Theta_{n}),\ p_n\sin(\Theta_{n}),\ 0  \right) </math>  
 
  <math> p_{n} = \left( E_n,\ p_n\cos(\Theta_{n}),\ p_n\sin(\Theta_{n}),\ 0  \right) </math>  
  <math> p_{\gamma} = \left( T_{\gamma},\ T_{\gamma},\ 0,\ 0  \right) </math>  
+
  <math> p_{p} = \left( E_p,\ p_p\cos(\Theta_{p}),\ p_p\sin(\Theta_{p}),\ 0  \right) </math>  
  
 
  <math> p^{\mu}_{\gamma} + p^{\mu}_{D} = p^{\mu}_{p} + p^{\mu}_{n} </math>
 
  <math> p^{\mu}_{\gamma} + p^{\mu}_{D} = p^{\mu}_{p} + p^{\mu}_{n} </math>

Revision as of 21:05, 5 June 2010

Go Back


Relativistic kinematic

Collision.png

We want to derive the how the energy of detected neutron depends on energy of incoming photons

[math] E = T + m[/math]
[math] E = p^2 + m^2[/math]

writing four-vectors:

[math] p_{\gamma} = \left( T_{\gamma},\ T_{\gamma},\ 0,\ 0  \right) [/math] 
[math] p_D     = \left( m_D,\ 0,\ 0,\ 0  \right) [/math] 
[math] p_{n} = \left( E_n,\ p_n\cos(\Theta_{n}),\ p_n\sin(\Theta_{n}),\ 0  \right) [/math] 
[math] p_{p} = \left( E_p,\ p_p\cos(\Theta_{p}),\ p_p\sin(\Theta_{p}),\ 0  \right) [/math] 
[math] p^{\mu}_{\gamma} + p^{\mu}_{D} = p^{\mu}_{p} + p^{\mu}_{n} [/math]
[math] p^{\mu}_{\gamma} + p^{\mu}_{D} = p^{\mu}_{p} + p^{\mu}_{n} [/math]



Go Back