Difference between revisions of "Faraday Cup Analysis"
Line 76: | Line 76: | ||
[[File:ADC channel distribution.png|200 px]]<br> | [[File:ADC channel distribution.png|200 px]]<br> | ||
Here it is interesting to note that total charge for first peak (blocks 7, 8) is 3 times more then for second peak (blocks 10, 11)<br> | Here it is interesting to note that total charge for first peak (blocks 7, 8) is 3 times more then for second peak (blocks 10, 11)<br> | ||
− | Is it beam which moving between blocks (7, 8) and (10, 11), but 3 times more strikes blocks (7,8) | + | Is it beam which moving between blocks (7, 8) and (10, 11), but 3 times more strikes blocks (7,8)<br><br> |
= Error Analysis= | = Error Analysis= |
Revision as of 06:52, 17 April 2010
Kicker magnet calibration
by using pulse by pulse ADC channel mean value distribution
For each beam pulse:
(average beam position for one pulse)
For distribution over all beam pulses:
(average beam position over all pulses)
(absolute error)
Here is:
1. ADC# = bridge#
2. Pulse# = ReadOut# = Entry# = Event#
Some examples of ADC mean value distribution. Here are:
1. x axis: ADC mean value for one pulse
2. y axis: number of pulse w/ that ADC mean value
by using ADC channel charge distribution
For each ADC channel:
(total charge per one ADC channel)
(absolute error in charge distribution per one ADC channel assuming Poisson)
For each ADC channel we have (Q +- q)
For distribution over all ADC channel:
(average beam position over all pulses)
(absolute error)
For all ADC channel we have +-
Faraday Cup 3D plot
Below is the plot of the charge in Faraday cup (pC) as a function of magnet current (vertical axis, A) (basically magnetic field) and ADC (horizontal axis).
What about moving beam?
"rain" plots (1477.dat)
As we can see from plots above there no beam on blocks 6 and 12.
And the total charge for blocks 7,8,9,10,11 is strongly fluctuates with time.
Also it is interesting to note the switch in mean value of charge distribution from up (blocks 7,8) to down (blocks (9,10,11)
This switch in mean value position is easy to see if we plot the histogram of charge distribution.
Question: Is it moving beam or is it current fluctuation in beam pulse?
correlation plots (1477.dat)
As we can see from plots above, there are strong correlations between blocks (7, 8, 10, 11)
There are weak correlation between blocks (9) and (7, 8, 10, 11)
And there are no correlation between blocks (6, 12) and all other blocks.
So is it moving beam? Between blocks (7, 8) and (10, 11)?
This structure can be seen if I plot histogram for charge distribution for all ADC blocks
Here it is interesting to note that total charge for first peak (blocks 7, 8) is 3 times more then for second peak (blocks 10, 11)
Is it beam which moving between blocks (7, 8) and (10, 11), but 3 times more strikes blocks (7,8)
Error Analysis
The ADC measures the charge deposited on each of the 16 Aluminum blocks. The ADC is a 12 bit ADC with a max input of 400 pc. THe means that the charge per channel is:
Run1477 -5A
Raw ADC result for channel 8 :
ADC 8 using channel -> Coul conversion:
The above histogram shows an RMS of 66.74 pC.
Comment
- The ADC basically counts the number of electrons collected by the aluminum FC bricks and transfered through the cables to the ADC. This is a poisson process with a large number of trials leading to a large mean value
The histogram shows
- Mean =
- RMS =
- What does this mean?
- The theoretical distribution would be Guassian with . The above suggests that the beam charge delivered to the FC is not following this statistical parent distribution. Most likely the beam current is changing while you are measuring the charge with the FC.
- Is the charge lost or is it just moving to different FC channels
Within 100 RF pulses the total charge on the FC drops from 600 to 100 pC. It seems the beam current is very unstable.
There also appears to be a gaussian distribution centered around 600 pC and a wider one centered around 100 pC.
Could it be that I can put a cut on total beam current and see if the charge moves between FC elements?
Let see what the total charge looks like for 3 cases.