Difference between revisions of "Forest ErrAna StatDist"

From New IAC Wiki
Jump to navigation Jump to search
Line 534: Line 534:
  
 
:<math>P(0,x, \lambda) = e^{\frac{-x}{\lambda}} \approx 1 - \frac{x}{\lambda}</math>
 
:<math>P(0,x, \lambda) = e^{\frac{-x}{\lambda}} \approx 1 - \frac{x}{\lambda}</math>
 +
 +
Now we wish to find the probability of finding <math>N</math> events over a distance <math>x</math> given the mean free path.
 +
 +
This is calculated as a joint probability.  If it were the case that we wanted to know the probability of only one interaction over a distance <math>L</math>.  Then we would want to multiply the probability that an interaction happened after a distance <math>dx</math> by the probability that no more interactions happen by the time the particle reaches the distance <math>L</math>.
 +
 +
We need to consider the probability that there was an interaction after a distance dx and the probability that no more interactions happen for the involving the probability of the event happening within a distance <math>dx</math> times the probability of it not happening for the rest of the length.
  
  

Revision as of 18:07, 6 February 2010

Parent Distribution

Let [math]x_i[/math] represent our ith attempt to measurement the quantity [math]x[/math]

Due to the random errors present in any experiment we should not expect [math]x_i = x[/math].

If we neglect systematic errors, then we should expect [math] x_i[/math] to, on average, follow some probability distribution around the correct value [math]x[/math].

This probability distribution can be referred to as the "parent population".


Average and Variance

Average

The word "average" is used to describe a property of a "parent" probability distribution or a set of observations/measurements made in an experiment which gives an indication of a likely outcome of an experiment.

The symbol

[math]\mu[/math]

is usually used to represent the "mean" of a known probability (parent) distribution (parent mean) while the "average" of a set of observations/measurements is denoted as

[math]\bar{x}[/math]

and is commonly referred to as the "sample" average or "sample mean".



Definition of the mean

[math]\mu \equiv \lim_{N\rightarrow \infty} \frac{\sum x_i}{N}[/math]


Here the above average of a parent distribution is defined in terms of an infinite sum of observations (x_i) of an observable x divided by the number of observations.

[math]\bar{x}[/math] is a calculation of the mean using a finite number of observations

[math] \bar{x} \equiv \frac{\sum x_i}{N}[/math]


This definition uses the assumption that the result of an experiment, measuring a sample average of [math](\bar{x})[/math], asymptotically approaches the "true" average of the parent distribution [math]\mu[/math] .

Variance

The word "variance" is used to describe a property of a probability distribution or a set of observations/measurements made in an experiment which gives an indication how much an observation will deviate from and average value.

A deviation [math](d_i)[/math] of any measurement [math](x_i)[/math] from a parent distribution with a mean [math]\mu[/math] can be defined as

[math]d_i\equiv x_i - \mu[/math]

the deviations should average to ZERO for an infinite number of observations by definition of the mean.

Definition of the average

[math]\mu \equiv \lim_{N\rightarrow \infty} \frac{\sum x_i}{N}[/math]
[math]\lim_{N\rightarrow \infty} \frac{\sum (x_i - \mu)}{N}[/math]
[math]= \left ( \lim_{N\rightarrow \infty} \frac{\sum (x_i }{N}\right ) - \mu[/math]
[math]= \left ( \lim_{N\rightarrow \infty} \frac{\sum (x_i }{N}\right ) - \lim_{N\rightarrow \infty} \frac{\sum x_i}{N} = 0[/math]


But the AVERAGE DEVIATION [math](\bar{d})[/math] is given by an average of the magnitude of the deviations given by

[math]\bar{d} = \lim_{N\rightarrow \infty} \frac{\sum \left | (x_i - \mu)\right |}{N}[/math] = a measure of the dispersion of the expected observations about the mean

Taking the absolute value though is cumbersome when performing a statistical analysis so one may express this dispersion in terms of the variance

A typical variable used to denote the variance is

[math]\sigma^2[/math]

and is defined as

[math]\sigma^2 = \lim_{N\rightarrow \infty}\left [ \frac{\sum (x_i-\mu)^2 }{N}\right ][/math]


Standard Deviation

The standard deviation is defined as the square root of the variance

S.D. = [math]\sqrt{\sigma}[/math]


The mean should be thought of as a parameter which characterizes the observations we are making in an experiment. In general the mean specifies the probability distribution that is representative of the observable we are trying to measure through experimentation.


The variance characterizes the uncertainty associated with our experimental attempts to determine the "true" value. Although the mean and true value may not be equal, their difference should be less than the uncertainty given by the governing probability distribution.

Another Expression for Variance

Using the definition of variance (omitting the limit as [math]n \rightarrow \infty[/math])

Evaluating the definition of variance
[math]\sigma^2 \equiv \frac{\sum(x_i-\mu)^2}{N} = \frac{\sum (x_i^2 -2x_i \mu + \mu^2)}{N} = \frac{\sum x_i^2}{N} - 2 \mu \frac{\sum x_i}{N} + \frac{N \mu^2}{N} [/math]
[math] = \frac{\sum x_i^2}{N} -2 \mu^2 + \mu^2 =\frac{\sum x_i^2}{N} - \mu^2[/math]


[math]\frac{\sum(x_i-\mu)^2}{N} =\frac{\sum x_i^2}{N} - \mu^2[/math]
[math]\Rightarrow \sigma^2 = E[(x-\mu)^2] = \sum_{x=0}^n (x_i - \mu)^2 P(x_i)[/math]
[math]= E[x^2] - \left ( E[x]\right )^2 = \sum_{x=0}^n x_i^2 P(x_i) - \left ( \sum_{x=0}^n x_i P(x_i)\right )^2[/math]

Average for an unknown probability distribution (parent population)

If the "Parent Population" is not known, you are just given a list of numbers with no indication of the probability distribution that they were drawn from, then the average and variance may be calculate as shown below.

Arithmetic Mean and variance

If [math]n[/math] observables are mode in an experiment then the arithmetic mean of those observables is defined as

[math]\bar{x} = \frac{\sum_{i=1}^{i=N} x_i}{N}[/math]


The "unbiased" variance of the above sample is defined as

[math]s^2 = \frac{\sum_{i=1}^{i=N} (x_i - \bar{x})^2}{N-1}[/math]
If you were told that the average is [math]\bar{x}[/math] then you can calculate the

"true" variance of the above sample as

[math]\sigma^2 = \frac{\sum_{i=1}^{i=N} (x_i - \bar{x})^2}{N}[/math] = RMS Error= Root Mean Squared Error
Note
RMS = Root Mean Square = [math]\frac{\sum_i^n x_i^2}{n}[/math] =

Statistical Variance decreases with N

The repetition of an experiment can decrease the STATISTICAL error of the experiment

Consider the following:

The average value of the mean of a sample of n observations drawn from the parent population is the same as the average value of each observation. (The average of the averages is the same as one of the averages)

[math]\bar{x} = \frac{\sum x_i}{N} =[/math] sample mean
[math]\overline{\left ( \bar{x} \right ) } = \frac{\sum{\bar{x}_i}}{N} =\frac{1}{N} N \bar{x_i} = \bar{x}[/math] if all means are the same

This is the reason why the sample mean is a measure of the population average ( [math]\bar{x} \sim \mu[/math])

Now consider the variance of the average of the averages (this is not the variance of the individual measurements but the variance of their means)

[math]\sigma^2_{\bar{x}} = \frac{\sum \left (\bar{x} -\overline{\left ( \bar{x} \right ) } \right )^2}{N} =\frac{\sum \bar{x_i}^2}{N} -\left( \overline{\left ( \bar{x} \right ) } \right )^2[/math]
[math]=\frac{\sum \bar{x_i}^2}{N} -\left( \bar{x} \right )^2[/math]
[math]=\frac{\sum \left( \sum \frac{x_i}{N}\right)^2}{N} -\left( \bar{x} \right )^2[/math]
[math]=\frac{1}{N^2}\frac{\sum \left( \sum x_i\right)^2}{N} -\left( \bar{x} \right )^2[/math]
[math]=\frac{1}{N^2}\frac{\sum \left (\sum x_i^2 + \sum_{i \ne j} x_ix_j \right )}{N} -\left( \bar{x} \right )^2[/math]
[math]=\frac{1}{N^2} \left [ \frac{\sum \left(\sum x_i^2 \right)}{N} + \frac{ \sum \left (\sum_{i \ne j} x_ix_j \right )}{N} \right ] -\left( \bar{x} \right )^2[/math]


If the measurements are all independent
Then [math] \frac{\sum x_i x_j}{N} = \frac{\sum x_i}{N} \frac{ \sum x_j}{N}[/math] : if [math]x_i[/math] is independent of [math]x_j[/math]
[math]= \left ( \frac{\sum x_i}{N} \right)^2 = \bar{x}^2[/math]
The above part of the proof needs work
[math]\sigma^2_{\bar{x}}=\frac{1}{N^2} \left [ \frac{\sum \left(\sum x_i^2 \right)}{N} + \sum_{i \ne j} \bar{x}^2 \right ] -\left( \bar{x} \right )^2[/math]

I use the expression [math]\sigma^2 = E[x^2] - \left ( E[x] \right)^2[/math] again, except for[math] x_i[/math] and not [math]\bar{x}[/math] and turn it around so

[math]\frac{\left(\sum x_i^2 \right)}{N} = \sigma^2 + \left ( \frac{\sum x_i}{N}\right)^2[/math]

Now I have

[math]\sigma^2_{\bar{x}}=\frac{1}{N^2} \left [ \sum \left (\sigma^2 + \left ( \frac{\sum x_i}{N} \right )^2 \right )+ \sum_{i \ne j} \bar{x}^2 \right ] -\left( \bar{x} \right )^2[/math]
[math]=\frac{1}{N^2} \left [ N\sigma^2 + N\left ( \frac{\sum x_i}{N} \right )^2 + \sum_{i \ne j} \bar{x}^2 \right ] -\left( \bar{x} \right )^2[/math]
[math]=\frac{1}{N^2} \left [ N\sigma^2 + N\left ( \frac{\sum x_i}{N} \right )^2 + N(N-1) \bar{x}^2 \right ] -\left( \bar{x} \right )^2[/math] Number of cross terms is N*(N-1)
[math]= \left [ \frac{\sigma^2}{N} + \left ( \frac{\sum x_i}{N} \right )^2 \right ] -\left( \bar{x} \right )^2[/math]
[math]= \left [ \frac{\sigma^2}{N} + \left ( \bar{x}\right )^2 \right ] -\left( \bar{x} \right )^2[/math]
[math]= \frac{\sigma^2}{N} [/math]


The above is the essence of counting statistics.

It says that the STATISTICAL error in an experiment decreases as a function of [math]\frac{1}{\sqrt N}[/math]

Biased and Unbiased variance

Where does this idea of an unbiased variance come from?


Using the same procedure as the previous section let's look at the average variance of the variances.

A sample variance of [math]n[/math] measurements of [math]x_i[/math] is

[math]\sigma_n^2 = \frac{\sum(x_i-\bar{x})^2}{n} = E[x^2] - \left ( E[x] \right)^2 = \frac{\sum x_i^2}{n} -\left ( \bar{x} \right)^2[/math]


To determine the "true" variance consider taking average of several sample variances (this is the same argument used above which let to [math]\overline{(\bar{x})} = \bar{x}[/math] )

[math]\frac{\sum \sigma_i^2}{N} = E[\sigma^2] - \left ( E[\sigma] \right)^2 = \frac{ \sum_j \left [ \frac{\sum_i x_i^2}{n} -\left ( \bar{x} \right)^2 \right ]_j}{N}[/math]
[math]= \frac{1}{n}\sum_i \left ( \frac{\sum_j x_j^2}{N} \right )_i - \frac {\sum_j \left ( \bar{x} \right)^2 }{N}[/math]
[math]= \frac{1}{n}\sum_i \left ( \frac{\sum_j x_j^2}{N} \right )_i - \left [ \left ( \frac {\sum_j \bar{x}}{N} \right)^2 + \sigma_{\bar{x}}^2\right ][/math] : as shown previously [math]E[\bar{x}^2] = \left ( E[\bar{x}] \right )^2 + \sigma_{\bar{x}}^2[/math]
[math]= \frac{1}{n}\sum_i \left ( \left [ \left (\frac{\sum_j x_j}{N}\right)^2 + \sigma^2 \right ]\right )_i - \left [ \left ( \frac {\sum_j x_j}{N} \right)^2 + \frac{\sigma^2}{n}\right ][/math] : also shown previously[math]\overline{\left ( \bar{x} \right ) } = \bar{x}[/math] the universe average is the same as the sample average
[math]= \frac{1}{n} \left ( n\left [ \left (\frac{\sum_j x_j}{N}\right)^2 + n\sigma^2 \right ]\right )_i - \left [ \left ( \frac {\sum_j x_j}{N} \right)^2 + \frac{\sigma^2}{n}\right ][/math]
[math]= \sigma^2 - \frac{\sigma^2}{n}[/math]
[math]= \frac{n-1}{n}\sigma^2[/math]
[math]\Rightarrow \sigma^2 = \frac{n}{n-1}\frac{\sum \sigma_i^2}{N}[/math]


Here

[math]\sigma^2 =[/math] the sample variance
[math]\frac{\sum \sigma_i^2}{N} =[/math] an average of all possible sample variance which should be equivalent to the "true" population variance.
[math]\Rightarrow \frac{\sum \sigma_i^2}{N} \sim \frac{x_i-\bar{x}}{n}[/math]
[math]\sigma^2 = \frac{n}{n-1}\frac{\sum(x_i-\bar{x})}{n}[/math]
[math]= \frac{\sum(x_i-\bar{x})}{n-1} =[/math] unbiased sample variance

Probability Distributions

Mean(Expectation value) and variance

Mean of Discrete Probability Distribution

In the case that you know the probability distribution you can calculate the mean[math] (\mu)[/math] or expectation value E(x) and standard deviation as

For a Discrete probability distribution

[math]\mu = E[x]=\lim_{N \rightarrow \infty} \frac{\sum_{i=1}^n x_i N P(x_i)}{N}[/math]

where

[math]N=[/math] number of observations

[math]n=[/math] number of different possible observable variables

[math]x_i =[/math] ith observable quantity

[math]P(x_i) =[/math] probability of observing [math]x_i[/math] = Probability Mass Distribution for a discrete probability distribution

Mean of a continuous probability distibution

The average (mean) of a sample drawn from any probability distribution is defined in terms of the expectation value E(x) such that

The expectation value for a continuous probability distribution is calculated as

[math]\mu = E(x) = \int_{-\infty}^{\infty} x P(x)dx[/math]

Variance

Variance of a discrete PDF

[math]\sigma^2 = \sum_{i=1}^n \left [ (x_i - \mu)^2 P(x_i)\right ][/math]

Variance of a Continuous PDF

[math]\sigma^2 = \int_{-\infty}^{\infty} \left [ (x - \mu)^2 P(x)\right ]dx[/math]

Expectation of Arbitrary function

If [math]f(x)[/math] is an arbitrary function of a variable [math]x[/math] governed by a probability distribution [math]P(x)[/math]

then the expectation value of [math]f(x)[/math] is

[math]E[f(x)] = \sum_{i=1}^N f(x_i) P(x_i) [/math]

or if a continuous distribtion

[math]E[f(x)] = \int_{-\infty}^{\infty} f(x) P(x)dx[/math]

Uniform

The Uniform probability distribution function is a continuous probability function over a specified interval in which any value within the interval has the same probability of occurring.

Mathematically the uniform distribution over an interval from a to b is given by


[math]P_U(x) =\left \{ {\frac{1}{b-a} \;\;\;\; x \gt a \mbox{ and } x \lt b \atop 0 \;\;\;\; x\gt b \mbox{ or } x \lt a} \right .[/math]

Mean of Uniform PDF

[math]\mu = \int_{-\infty}^{\infty} xP_U(x)dx = \int_{a}^{b} \frac{x}{b-a} dx = \left . \frac{x^2}{2(b-a)} \right |_a^b = \frac{1}{2}\frac{b^2 - a^2}{b-a} = \frac{1}{2}(b+a)[/math]

Variance of Uniform PDF

[math]\sigma^2 = \int_{-\infty}^{\infty} (x-\mu)^2 P_U(x)dx = \int_{a}^{b} \frac{\left (x-\frac{b+a}{2}\right )^2}{b-a} dx = \left . \frac{(x -\frac{b+a}{2})^3}{3(b-a)} \right |_a^b [/math]
[math]=\frac{1}{3(b-a)}\left [ \left (b -\frac{b+a}{2} \right )^3 - \left (a -\frac{b+a}{2} \right)^3\right ][/math]
[math]=\frac{1}{3(b-a)}\left [ \left (\frac{b-a}{2} \right )^3 - \left (\frac{a-b}{2} \right)^3\right ][/math]
[math]=\frac{1}{24(b-a)}\left [ (b-a)^3 - (-1)^3 (b-a)^3\right ][/math]
[math]=\frac{1}{12}(b-a)^2[/math]


Now use ROOT to generate uniform distributions. http://wiki.iac.isu.edu/index.php/TF_ErrAna_InClassLab#Day_3

Binomial Distribution

Binomial random variable describes experiments in which the outcome has only 2 possibilities. The two possible outcomes can be labeled as "success" or "failure". The probabilities may be defined as

p
the probability of a success

and

q
the probability of a failure.


If we let [math]X[/math] represent the number of successes after repeating the experiment [math]n[/math] times

Experiments with [math]n=1[/math] are also known as Bernoulli trails.

Then [math]X[/math] is the Binomial random variable with parameters [math]n[/math] and [math]p[/math].

The number of ways in which the [math]x[/math] successful outcomes can be organized in [math]n[/math] repeated trials is

[math]\frac{n !}{ \left [ (n-x) ! x !\right ]}[/math] where the [math] ![/math] denotes a factorial such that [math]5! = 5\times4\times3\times2\times1[/math].

The expression is known as the binomial coefficient and is represented as

[math]{n\choose x}=\frac{n!}{x!(n-x)!}[/math]


The probability of any one ordering of the success and failures is given by

[math]P( \mbox{experimental ordering}) = p^{x}q^{n-x}[/math]


This means the probability of getting exactly k successes after n trials is

[math]P_B(x) = {n\choose x}p^{x}q^{n-x} [/math]

Mean

It can be shown that the Expectation Value of the distribution is

[math]\mu = n p[/math]


[math]\mu = \sum_{x=0}^n x P_B(x) = \sum_{x=0}^n x \frac{n!}{x!(n-x)!} p^{x}q^{n-x}[/math]
[math] = \sum_{x=1}^n \frac{n!}{(x-1)!(n-x)!} p^{x}q^{n-x}[/math] :summation starts from x=1 and not x=0 now
[math] = np \sum_{x=1}^n \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1}q^{n-x}[/math] :factor out [math]np[/math] : replace n-1 with m everywhere and it looks like binomial distribution
[math] = np \sum_{y=0}^{n-1} \frac{(n-1)!}{(y)!(n-y-1)!} p^{y}q^{n-y-1}[/math] :change summation index so y=x-1, now n become n-1
[math] = np \sum_{y=0}^{n-1} \frac{(n-1)!}{(y)!(n-1-y)!} p^{y}q^{n-1-y}[/math] :
[math] = np (q+p)^{n-1}[/math] :definition of binomial expansion
[math] = np 1^{n-1}[/math] :q+p =1
[math] = np [/math]


variance

[math]\sigma^2 = npq[/math]
Remember
[math]\frac{\sum(x_i-\mu)^2}{N} = \frac{\sum (x_i^2 -2x_i \mu + \mu^2)}{N} = \frac{\sum x_i^2}{N} - 2 \mu \frac{\sum x_i}{N} + \frac{N \mu^2}{N} [/math]
[math] = \frac{\sum x_i^2}{N} -2 \mu^2 + \mu^2 =\frac{\sum x_i^2}{N} - \mu^2[/math]


[math]\frac{\sum(x_i-\mu)^2}{N} =\frac{\sum x_i^2}{N} - \mu^2[/math]
[math]\Rightarrow \sigma^2 = E[(x-\mu)^2] = \sum_{x=0}^n (x_i - \mu)^2 P_B(x_i)[/math]
[math]= E[x^2] - \left ( E[x]\right )^2 = \sum_{x=0}^n x_i^2 P_B(x_i) - \left ( \sum_{x=0}^n x_i P_B(x_i)\right )^2[/math]


To calculate the variance of the Binomial distribution I will just calculate [math]E[x^2][/math] and then subtract off [math]\left ( E[x]\right )^2[/math].

[math]E[x^2] = \sum_{x=0}^n x^2 P_B(x)[/math]
[math]= \sum_{x=1}^n x^2 P_B(x)[/math] : x=0 term is zero so no contribution
[math]=\sum_{x=1}^n x^2 \frac{n!}{x!(n-x)!} p^{x}q^{n-x}[/math]
[math]= np \sum_{x=1}^n x \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1}q^{n-x}[/math]

Let m=n-1 and y=x-1

[math]= np \sum_{y=0}^n (y+1) \frac{m!}{(y)!(m-1-y+1)!} p^{y}q^{m-1-y+1}[/math]
[math]= np \sum_{y=0}^n (y+1) P(y)[/math]
[math]= np \left ( \sum_{y=0}^n y P(y) + \sum_{y=0}^n (1) P(y) \right)[/math]
[math]= np \left ( mp + 1 \right)[/math]
[math]= np \left ( (n-1)p + 1 \right)[/math]


[math]\sigma^2 = E[x^2] - \left ( E[x] \right)^2 = np \left ( (n-1)p + 1 \right) - (np)^2 = np(1-p) = npq[/math]

Examples

The number of times a coin toss is heads.

The probability of a coin landing with the head of the coin facing up is

[math]P = \frac{\mbox{number of desired outcomes}}{\mbox{number of possible outcomes}} = \frac{1}{2}[/math] = Uniform distribution with a=0 (tails) b=1 (heads).

Suppose you toss a coin 4 times. Here are the possible outcomes


order Number Trial # # of Heads
1 2 3 4
1 t t t t 0
2 h t t t 1
3 t h t t 1
4 t t h t 1
5 t t t h 1
6 h h t t 2
7 h t h t 2
8 h t t h 2
9 t h h t 2
10 t h t h 2
11 t t h h 2
12 t h h h 3
13 h t h h 3
14 h h t h 3
15 h h h t 3
16 h h h h 4


The probability of order #1 happening is

P( order #1) = [math]\left ( \frac{1}{2} \right )^0\left ( \frac{1}{2} \right )^4 = \frac{1}{16}[/math]

P( order #2) = [math]\left ( \frac{1}{2} \right )^1\left ( \frac{1}{2} \right )^3 = \frac{1}{16}[/math]

The probability of observing the coin land on heads 3 times out of 4 trials is.

[math]P(x=3) = \frac{4}{16} = \frac{1}{4} = {n\choose x}p^{x}q^{n-x} = \frac{4 !}{ \left [ (4-3) ! 3 !\right ]} \left ( \frac{1}{2}\right )^{3}\left ( \frac{1}{2}\right )^{4-3} = \frac{24}{1 \times 6} \frac{1}{16} = \frac{1}{4}[/math]

A 6 sided die

A die is a 6 sided cube with dots on each side. Each side has a unique number of dots with at most 6 dots on any one side.

P=1/6 = probability of landing on any side of the cube.

Expectation value :

The expected (average) value for rolling a single die.
[math]E({\rm Roll\ With\ 6\ Sided\ Die}) =\sum_i x_i P(x_i) =1 \left ( \frac{1}{6} \right) + 2\left ( \frac{1}{6} \right)+ 3\left ( \frac{1}{6} \right)+ 4\left ( \frac{1}{6} \right)+ 5\left ( \frac{1}{6} \right)+ 6\left ( \frac{1}{6} \right)=\frac{1 + 2 + 3 + 4 + 5 + 6}{6} = 3.5[/math]

The variance:

[math]E({\rm Roll\ With\ 6\ Sided\ Die}) =\sum_i (x_i - \mu)^2 P(x_i) [/math]
[math]= (1-3.5)^2 \left ( \frac{1}{6} \right) + (2-3.5)^2\left ( \frac{1}{6} \right)+ (3-3.5)^2\left ( \frac{1}{6} \right)+ (4-3.5)^2\left ( \frac{1}{6} \right)+ (5-3.5)^2\left ( \frac{1}{6} \right)+ (6-3.5)^2\left ( \frac{1}{6} \right) =2.92[/math]
[math]= \sum_i (x_i)^2 P(x_i) - \mu^2 = \left [ 1 \left ( \frac{1}{6} \right) + 4\left ( \frac{1}{6} \right)+ 9\left ( \frac{1}{6} \right)+ 16\left ( \frac{1}{6} \right)+ 25\left ( \frac{1}{6} \right)+ 36\left ( \frac{1}{6} \right) \right ] - (3.5)^3 =2.92[/math]


If we roll the die 10 times what is the probability that X dice will show a 6?

A success will be that the die landed with 6 dots face up.

So the probability of this is 1/6 (p=1/6) , we toss it 10 times (n=10) so the binomial distribution function for a success/fail experiment says

[math]P_B(x) = {n\choose x}p^{x}q^{n-x} = \frac{10 !}{ \left [ (10-x) ! x !\right ]} \left ( \frac{1}{6}\right )^{x}\left ( \frac{5}{6}\right )^{10-x} [/math]

So the probability the die will have 6 dots face up in 4/10 rolls is

[math]P_B(x=4) = \frac{10 !}{ \left [ (10-4) ! 4 !\right ]} \left ( \frac{1}{6}\right )^{4}\left ( \frac{5}{6}\right )^{10-4} [/math]

[math] = \frac{10 !}{ \left [ (6) ! 4 !\right ]} \left ( \frac{1}{6}\right )^{4}\left ( \frac{5}{6}\right )^{6} = \frac{210 \times 5^6}{6^10}=0.054 [/math]

Mean = np =[math]\mu = 10/6 = 1.67[/math] Variance = [math]\sigma^2 = 10 (1/6)(5/6) = 1.38[/math]

Poisson Distribution

The Poisson distribution is an approximation to the binomial distribution in the event the the probability of a success is quite small [math](p \ll 1)[/math]. As the number of repeated observations (n) gets large, the binomial distribution becomes more difficult to evaluate because of the leading term

[math]\frac{n !}{ \left [ (n-x) ! x !\right ]}[/math]


The poisson distribution overcomes this problem by defining the probability in terms of the average [math]\mu[/math].

[math]P_P(x) = \frac{\left ( \lambda s \right)^x e^{-\lambda s}}{x!} = \frac{\mu^x e^{-\mu}}{x!}[/math]

where

[math]\lambda[/math] = probability for the occurrence of an event per unit interval [math]s[/math]
[math] \mu = \lambda s[/math]

Poisson as approximation to Binomial

To drive home the idea that the Poisson distribution approximates a Binomial distribution at small p and large n consider the following derivation

The Binomial Probability Distriubtions is


[math]P_B(x) = \frac{n!}{x!(n-x)!}p^{x}q^{n-x}[/math]

The term

[math] \frac{n!}{(n-x)!} = \frac{(n-x)! (n-x+1) (n-x + 2) \dots (n-1)(n)}{(n-x)!}[/math]
[math]= n (n-1)(n-2) \dots (n-x+2) (n-x+1)[/math]
IFF [math]x \ll n \Rightarrow[/math] we have x terms above
then [math]\frac{n!}{(n-x)!} =n^x[/math]
example:[math] \frac{100!}{(100-1)!} = \frac{99! \times 100}{99!} = 100^1[/math]

This leave us with

[math]P(x) = \frac{n^x}{x!}p^{x}q^{n-x}= \frac{(np)^x}{x!}(1-p)^{n-x}[/math]
[math]= \frac{(\mu)^x}{x!}(1-p)^{n}(1-p)^{-x}[/math]
[math](1-p)^{-x} = \frac{1}{(1-p)^x} = 1+px = 1 : p \ll 1[/math]
[math]P(x) = \frac{(\mu)^x}{x!}(1-p)^{n}[/math]


[math](1-p)^{n} = \left [(1-p)^{1/p} \right]^{\mu}[/math]


[math]\lim_{p \rightarrow 0} \left [(1-p)^{1/p} \right]^{\mu} = \left ( \frac{1}{e} \right)^{\mu} = e^{- \mu}[/math]
For [math]x \ll n[/math]
[math]\lim_{p \rightarrow 0}P_B(x,n,p ) = P_P(x,\mu)[/math]

Derivation of Poisson Distribution

The mean free path of a particle traversing a volume of material is a common problem in nuclear and particle physics. If you want to shield your apparatus or yourself from radiation you want to know how far the radiation travels through material.

The mean free path is the average distance a particle travels through a material before interacting with the material.

If we let [math]\lambda[/math] represent the mean free path
Then the probability of having an interaction after a distance x is
[math]\frac{x}{\lambda}[/math]

as a result

[math]1-\frac{x}{\lambda}= P(0,x, \lambda)[/math] = probability of getting no events after a length dx

When we consider [math]\frac{x}{\lambda} \ll 1[/math] ( we are looking for small distances such that the probability of no interactions is high)


[math]P(0,x, \lambda) = e^{\frac{-x}{\lambda}} \approx 1 - \frac{x}{\lambda}[/math]

Now we wish to find the probability of finding [math]N[/math] events over a distance [math]x[/math] given the mean free path.

This is calculated as a joint probability. If it were the case that we wanted to know the probability of only one interaction over a distance [math]L[/math]. Then we would want to multiply the probability that an interaction happened after a distance [math]dx[/math] by the probability that no more interactions happen by the time the particle reaches the distance [math]L[/math].

We need to consider the probability that there was an interaction after a distance dx and the probability that no more interactions happen for the involving the probability of the event happening within a distance [math]dx[/math] times the probability of it not happening for the rest of the length.


1.) Assume that the average rate of an event is constant over a given time interval and that the events are randomly distributed over that time interval.

2.) The probability of NO events occurring over the time interval t is exponential such that

[math]P(0,t,\tau) = e^{-t/\tau}[/math]

where \tau is a constant of proportionality associated with the mean time

the change in the probability as a function of time is given by

[math]dP(0,t,\tau) = e^{-t/\tau} \frac{- dt}{\tau} = - P(0,t,\tau) \frac{dt}{\tau}[/math]


To Find the probability of actually observing a non zero value of

x

events in the time interval t you would integrate the differential probability

Gaussian

Lorentzian

Gamma

Beta

Breit Wigner

Cauchy

Chi-squared

Exponential

Landau

Log Normal

t-Distribution

The Student's t-distribution is defined as

[math]t = \frac{\bar{x} - \mu}{s/\sqrt{N}}[/math]


t-distribution is a "one tailed" test typically used for small sample sizes (N > 24) where the parent population mean [math]\mu[/math] is known.


F-distribution

[math]F= \frac{s_1^2}{s_2^2}[/math]

Skewness and Kutosis

Skewness

Skewness = [math]\frac{\sum (x_i - \bar{x})^3}{(N-1)s^3}[/math]

where

[math]s^2 = \frac{\sum (x_i - \bar{x})^2}{N-1}[/math]


Measures the symmetry of the distribution

Kurtosis

Kurtosis = [math]\frac{\sum (x_i - \bar{x})^4}{(N-1)s^4}[/math]

where

[math]s^2 = \frac{\sum (x_i - \bar{x})^2}{N-1}[/math]

Measures the "pointyness" of the distribution


K=3 for Normal Distribution

[1] Forest_Error_Analysis_for_the_Physical_Sciences