Difference between revisions of "Integrated asymmetry"

From New IAC Wiki
Jump to navigation Jump to search
Line 20: Line 20:
 
<math>\boldsymbol\delta up = \sqrt{up};\quad\boldsymbol\delta Wup = \sqrt{Wup};\quad...</math><br><br>
 
<math>\boldsymbol\delta up = \sqrt{up};\quad\boldsymbol\delta Wup = \sqrt{Wup};\quad...</math><br><br>
 
Then<br>
 
Then<br>
<math>Error = \sqrt{\left(\frac{(+)-(-)}{(+)^2}\right)}</math>
+
<math>Error = \sqrt{\left(\frac{(+)-(-)}{(+)^2}\right)\left[\fraq{a}{b}\right]}</math>
 
   
 
   
 
=Cases was analysed=
 
=Cases was analysed=

Revision as of 06:33, 7 June 2009

Go Back

Integrated asymmetry calculation

Asymm=[(up(ii)Wupupbg(ii)Wupbg)(sd(ii)Wsdsdbg(ii)Wsdbg)][(up(ii)Wupupbg(ii)Wupbg)+(sd(ii)Wsdsdbg(ii)Wsdbg)]

where

up(ii)   - D2O, detector Up,   Wup - weighted coefficient for up(ii)
upbg(ii) - H2O, detector Up, Wup - weighted coefficient for upbg(ii)
sd(ii) - D2O, detector Side, Wup - weighted coefficient for sd(ii)
sdbg(ii) - N2O, detector Side, Wup - weighted coefficient for sdbg(ii)

For detector A summation is over [1000:1600] bin numbers
For detector C summation is over [900:1600] bin numbers

Error calculation

Error=(Aup)2(δup)2+(AWup)2(δWup)2+...

If assume:
δup=up;δWup=Wup;...

Then
Error=((+)()(+)2)[\fraqab]

Cases was analysed

Det A:

D2O Up,   files# [40,56,102,108,134,205,210,230];
H2O Up, files# [44];
D2O Side, files# [48,74,78,82,86,90,94,146,180,190,225,235];
H2O Side, files# [52];

Det C:

D2O Up,   files# [49,75,79,83,87,91,95,147,181,191,226,236];
H2O Up, files# [53];
D2O Side, files# [41,57,103,107,135,206,211,231];
H2O Side, files# [45];

Results

Table 1: Det A, weighted with [math]{\color{Red}NaI \ detector}[/math]
Table 2: Det C, weighted with [math]{\color{Red}NaI \ detector}[/math]
Table 3: Det A, weighted with [math]{\color{Red}Ref \ detector}[/math]
Table 4: Det C, weighted with [math]{\color{Red}Ref \ detector}[/math]


(File:Asymm table .pdf)


Change the X-axis to nanosecond or neutron energy (TF)
Only one "s" in Asymmetry

Example of bin by bin asymmetry

Asymm RefDet DetA 40,44,48(74,78),52.jpg


Go Back