Difference between revisions of "Differential Cross-Section"
Jump to navigation
Jump to search
Line 99: | Line 99: | ||
<center><math>\left(10\right)\qquad \qquad \frac{-2us}{t^2}=\frac{4p^{*2}\left(1+\cos{\theta}\right)4E^{*2}}{4p^{*2}\left(1-\cos{\theta}\right)^2}=\frac{4E^{*2}\left(1+\cos{\theta}\right)\csc^4{\frac{\theta}{2}}}{p^{*2}}=\frac{4E^{*2}p^{*2}\left(1+\cos{\theta}\right)}{p^{*4}\left(1-\cos{\theta}\right)^2}=\frac{4E^{*2}p^{*2}\left(1+\cos{\theta}\right)\left(1+\cos{\theta}\right)^2}{p^{*4}\left(1-\cos{\theta}\right)^2\left(1+\cos{\theta}\right)^2}=\frac{4E^{*2}p^{*2}\left(\cos^3{\theta}+3\cos^2{\theta}+3\cos{\theta}+1\right)}{p^{*4}\sin^4{\theta}}</math></center> | <center><math>\left(10\right)\qquad \qquad \frac{-2us}{t^2}=\frac{4p^{*2}\left(1+\cos{\theta}\right)4E^{*2}}{4p^{*2}\left(1-\cos{\theta}\right)^2}=\frac{4E^{*2}\left(1+\cos{\theta}\right)\csc^4{\frac{\theta}{2}}}{p^{*2}}=\frac{4E^{*2}p^{*2}\left(1+\cos{\theta}\right)}{p^{*4}\left(1-\cos{\theta}\right)^2}=\frac{4E^{*2}p^{*2}\left(1+\cos{\theta}\right)\left(1+\cos{\theta}\right)^2}{p^{*4}\left(1-\cos{\theta}\right)^2\left(1+\cos{\theta}\right)^2}=\frac{4E^{*2}p^{*2}\left(\cos^3{\theta}+3\cos^2{\theta}+3\cos{\theta}+1\right)}{p^{*4}\sin^4{\theta}}</math></center> | ||
+ | |||
+ | |||
+ | Combing like terms further, | ||
+ | |||
+ | |||
+ | <center><math>\left(1,3/4\right)\rightarrow \qquad \qquad 4p^{*4}\cos^4{\theta}+8p^{*4}\cos^2{\theta}+4p^{*4}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\left(2,6/5\right) \rightarrow \qquad \qquad 16E^{*4}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\left(8/7,10/9\right) \rightarrow \qquad \qquad 16E^{*2}p^{*2}+16E^{82}p^{*2}\cos^2{\theta}</math></center> | ||
+ | |||
+ | |||
---- | ---- | ||
Revision as of 18:07, 1 January 2019
Differential Cross-Section
Working in the center of mass frame
Determining the scattering amplitude in the center of mass frame
Using the fine structure constant (
)
In the center of mass frame the Mandelstam variables are given by:
Calculating the parts to have common denominators:
Combing like terms further,