Difference between revisions of "Differential Cross-Section"
Jump to navigation
Jump to search
Line 82: | Line 82: | ||
− | <center><math>\frac{-2s}{t}=\frac{8E^{*2}}{2p^{*2}\left(1-\cos{\theta}\right)}=\frac{4E^{*2}}{p^{*2}\left(1-\cos{\theta}\right)}=\frac{4E^{*2}\left(1+\cos{\theta}\right)}{p^{*2}\left(1-\cos{\theta}\right)\left(1+\cos{\theta}\right)}=\frac{4E^{*2}\left(1+\cos{\theta}\right)}{p^{*2}\sin^2{\theta}}=\frac{4E^{*2} | + | <center><math>\frac{-2s}{t}=\frac{8E^{*2}}{2p^{*2}\left(1-\cos{\theta}\right)}=\frac{4E^{*2}}{p^{*2}\left(1-\cos{\theta}\right)}=\frac{4E^{*2}\left(1+\cos{\theta}\right)}{p^{*2}\left(1-\cos{\theta}\right)\left(1+\cos{\theta}\right)}=\frac{4E^{*2}\left(1+\cos{\theta}\right)}{p^{*2}\sin^2{\theta}}=\frac{4E^{*2}p^{*2}sin^2{\theta}\left(1-\cos{\theta}\right)}{p^{*4}sin^4{\theta}}</math></center> |
− | <center><math>\frac{-2s}{u}=\frac{8E^{*2}}{2p^{*2}\left(1+\cos{\theta}\right)}=\frac{4E^{*2}}{p^{*2}\left(1+\cos{\theta}\right)}=\frac{4E^{*2}\left(1-\cos{\theta}\right)}{p^{*2}\left(1+\cos{\theta}\right)\left(1-\cos{\theta}\right)}=\frac{4E^{*2}\left(1-\cos{\theta}\right)}{p^{*2}sin^2{\theta}}=\frac{4E^{*2}sin^2{\theta}\left(1-\cos{\theta}\right)}{p^{* | + | <center><math>\frac{-2s}{u}=\frac{8E^{*2}}{2p^{*2}\left(1+\cos{\theta}\right)}=\frac{4E^{*2}}{p^{*2}\left(1+\cos{\theta}\right)}=\frac{4E^{*2}\left(1-\cos{\theta}\right)}{p^{*2}\left(1+\cos{\theta}\right)\left(1-\cos{\theta}\right)}=\frac{4E^{*2}\left(1-\cos{\theta}\right)}{p^{*2}sin^2{\theta}}=\frac{4E^{*2}p^{*2}sin^2{\theta}\left(1-\cos{\theta}\right)}{p^{*4}sin^4{\theta}}</math></center> |