Difference between revisions of "Differential Cross-Section"
Jump to navigation
Jump to search
Line 91: | Line 91: | ||
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{ | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\left(\cos^2{\theta}+1\right)}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\left(\cos{2\theta}+3\right)}{p^{*4}\sin^4{\theta}}\right )</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{ | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\left(\cos^2{\theta}+1\right)}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\cos{2\theta}}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{ | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{48E^{*2}p^{*2}\left(\cos^2{\theta}+1\right)}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\sin^4{\theta}}{\left(\cos{\theta}+1\right)^4}+\frac{\sin^4{\theta}}{\left(\cos{\theta}-1\right)^4}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{ | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\sin^4{\theta}}{\left(\cos{\theta}+1\right)^4}+\frac{\sin^4{\theta}}{\left(\cos{\theta}-1\right)^4}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\left(\cos^2{\theta}+1\right)}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\sin^4{\theta}\left(\cos{\theta}-1\right)^4}{\left(\cos{\theta}+1\right)^4\left(\cos{\theta}-1\right)^4}+\frac{\sin^4{\theta}\left(\cos{\theta}+1\right)^4}{\left(\cos{\theta}-1\right)^4\left(\cos{\theta}+1\right)^4}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{ | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\sin^4{\theta}\left(\cos{\theta}-1\right)^4}{\left(\cos{\theta}+1\right)^4\left(\cos{\theta}-1\right)^4}+\frac{\sin^4{\theta}\left(\cos{\theta}+1\right)^4}{\left(\cos{\theta}-1\right)^4\left(\cos{\theta}+1\right)^4}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\left(\cos^2{\theta}+1\right)}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\sin^4{\theta}\left(\cos{\theta}-1\right)^4}{\sin^8{\theta}}+\frac{\sin^4{\theta}\left(\cos{\theta}+1\right)^4}{\sin^8{\theta}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{ | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\sin^4{\theta}\left(\cos{\theta}-1\right)^4}{\sin^8{\theta}}+\frac{\sin^4{\theta}\left(\cos{\theta}+1\right)^4}{\sin^8{\theta}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\left(\cos^2{\theta}+1\right)}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\left(\cos{\theta}-1\right)^4}{\sin^4{\theta}}+\frac{\left(\cos{\theta}+1\right)^4}{\sin^4{\theta}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{ | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\left(\cos{\theta}-1\right)^4}{\sin^4{\theta}}+\frac{\left(\cos{\theta}+1\right)^4}{\sin^4{\theta}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\left(\cos^2{\theta}+1\right)}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\left(2\cos^4{\theta}+12\cos^2{\theta}+2 \right)}{\sin^4{\theta}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{ | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\left(2\cos^4{\theta}+12\cos^2{\theta}+2 \right)}{\sin^4{\theta}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\left(\cos^2{\theta}+1\right)}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center> |