Difference between revisions of "Differential Cross-Section"
Jump to navigation
Jump to search
Line 87: | Line 87: | ||
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{16E^{*4}\cos^4{\frac{\theta}{2}}}{p^{*4}\sin^4{\theta}}+\frac{16E^{*4}\sin^4{\frac{\theta}{2}}}{p^{*4}\sin^4{\theta}}\right )</math></center> | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{4E^{*2}p^{*2}\left(3\cos^2{\theta}-3\sin^2{\theta}+5\right)}{p^{*4}\sin^4{\theta}}+\frac{16E^{*4}\cos^4{\frac{\theta}{2}}}{p^{*4}\sin^4{\theta}}+\frac{16E^{*4}\sin^4{\frac{\theta}{2}}}{p^{*4}\sin^4{\theta}}\right )</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\left(\cos{2\theta}+3\right)}{p^{*4}\sin^4{\theta}}\right )</math></center> | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{4E^{*2}p^{*2}\left(3\cos^2{\theta}-3\sin^2{\theta}+5\right)}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\left(\cos{2\theta}+3\right)}{p^{*4}\sin^4{\theta}}\right )</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\cos{2\theta}}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center> | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{4E^{*2}p^{*2}\left(3\cos^2{\theta}-3\sin^2{\theta}+5\right)}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\cos{2\theta}}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center> | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{4E^{*2}p^{*2}\left(3\cos^2{\theta}-3\sin^2{\theta}+5\right)}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\sin^4{\theta}}{\left(\cos{\theta}+1\right)^4}+\frac{\sin^4{\theta}}{\left(\cos{\theta}-1\right)^4}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center> | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\sin^4{\theta}}{\left(\cos{\theta}+1\right)^4}+\frac{\sin^4{\theta}}{\left(\cos{\theta}-1\right)^4}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{4E^{*2}p^{*2}\left(3\cos^2{\theta}-3\sin^2{\theta}+5\right)}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\sin^4{\theta}\left(\cos{\theta}-1\right)^4}{\left(\cos{\theta}+1\right)^4\left(\cos{\theta}-1\right)^4}+\frac{\sin^4{\theta}\left(\cos{\theta}+1\right)^4}{\left(\cos{\theta}-1\right)^4\left(\cos{\theta}+1\right)^4} | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\sin^4{\theta}\left(\cos{\theta}-1\right)^4}{\left(\cos{\theta}+1\right)^4\left(\cos{\theta}-1\right)^4}+\frac{\sin^4{\theta}\left(\cos{\theta}+1\right)^4}{\left(\cos{\theta}-1\right)^4\left(\cos{\theta}+1\right)^4}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{4E^{*2}p^{*2}\left(3\cos^2{\theta}-3\sin^2{\theta}+5\right)}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\sin^4{\theta}\left(\cos{\theta}-1\right)^4}{\sin^8{\theta}}+\frac{\sin^4{\theta}\left(\cos{\theta}+1\right)^4}{\sin^8{\theta}} | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\sin^4{\theta}\left(\cos{\theta}-1\right)^4}{\sin^8{\theta}}+\frac{\sin^4{\theta}\left(\cos{\theta}+1\right)^4}{\sin^8{\theta}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{4E^{*2}p^{*2}\left(3\cos^2{\theta}-3\sin^2{\theta}+5\right)}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\left(\cos{\theta}-1\right)^4}{\sin^4{\theta}}+\frac{\left(\cos{\theta}+1\right)^4}{\sin^4{\theta}} | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\left(\cos{\theta}-1\right)^4}{\sin^4{\theta}}+\frac{\left(\cos{\theta}+1\right)^4}{\sin^4{\theta}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{4E^{*2}p^{*2}\left(3\cos^2{\theta}-3\sin^2{\theta}+5\right)}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\left(2\cos^4{\theta}+12\cos^2{\theta}+2 \right)}{\sin^4{\theta}} | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{\left(2\cos^4{\theta}+12\cos^2{\theta}+2 \right)}{\sin^4{\theta}}+\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{4E^{*2}p^{*2}\left(3\cos^2{\theta}-3\sin^2{\theta}+5\right)}{p^{*4}\sin^4{\theta}}+\frac{4E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}\sin^4{\theta}}\left( \frac{\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)}{1} | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}\sin^4{\theta}}\left( \frac{\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)}{1}+\frac{4E^{*4}\sin^2{\theta}}{p^{*4}}+\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}+\frac{8E^{*2}p^{*2}\sin^2{\theta}}{p^{*4}\sin^4{\theta}}+\frac{4E^{*2}p^{*2}\left(3\cos^2{\theta}-3\sin^2{\theta}+5\right)}{p^{*4}\sin^4{\theta}}+\frac{2E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}}+\frac{6E^{*4}}{p^{*4}} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}\sin^4{\theta}}\left( \frac{p^4\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)}{p^4} | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}\sin^4{\theta}}\left( \frac{p^4\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)}{p^4}+\frac{4E^{*4}\sin^2{\theta}}{p^{*4}}+\frac{2E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}}+\frac{6E^{*4}}{p^{*4}} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}p^4\sin^4{\theta}}\left( p^4\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right) | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}p^4\sin^4{\theta}}\left( p^4\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)+4E^{*4}\sin^2{\theta}+2E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)+6E^{*4} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}p^4\sin^4{\theta}}\left( p^4\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right) | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}p^4\sin^4{\theta}}\left( p^4\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)+4E^{*4}\sin^2{\theta}+2E^{*4}\left(1-2\sin^2{\theta}\right)+6E^{*4} \right)</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}p^4\sin^4{\theta}}\left( p^4\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right) | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}p^4\sin^4{\theta}}\left( p^4\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)+8E^{*4}\sin^2{\theta}+8E^{*4}\right) </math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}p^4\sin^4{\theta}}\left( p^4\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right) | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}p^4\sin^4{\theta}}\left( p^4\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)+8E^{*4}\left(1-\cos^2{\theta}\right)+8E^{*4}\right) </math></center> |