Difference between revisions of "Differential Cross-Section"

From New IAC Wiki
Jump to navigation Jump to search
Line 137: Line 137:
  
  
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}p^4\sin^4{\theta}}\left( p^4\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)-4E^{*4}p^2\sin^4{\theta}-4E^{*4}\sin^2{\theta}+68E^{*4} \right)</math></center>
+
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}p^4\sin^4{\theta}}\left( p^4\left(\cos^4{\theta}+6\cos^2{\theta}+1 \right)-4E^{*4}p^2\sin^4{\theta}-4E^{*4}\sin^2{\theta}+8E^{*4} \right)</math></center>
  
  

Revision as of 20:28, 30 December 2018

Navigation_

Differential Cross-Section

dσdΩ=164π2spfinalpinitial|M|2


Working in the center of mass frame

pfinal=pinitial


Determining the scattering amplitude in the center of mass frame


M=e2(ust+tsu)


M2=e4(ust+tsu)(ust+tsu)


M2=e4((us)2t2+(ts)2u2+2(us)t(ts)u)


M2=e4((u22us+s2)t2+(t22ts+s2)u2+2(utst+s2us)tu)


M2=e4((t2+s2)u22s2tu+(u2+s2)t2)


Using the fine structure constant (with c==ϵ0=1)

αe24π


dσdΩ=α22s((t2+s2)u22s2tu+(u2+s2)t2)


In the center of mass frame the Mandelstam variables are given by:

s4E2


t2p2(1cosθ)=2p2(12cos2θ2+1)=4p2(12cos2θ2)=4p2sin2θ2



u2p2(1+cosθ)=2p2(1+2cos2θ21)=4p2cos2θ2


Simplifying using the relationship

cosθ=1+cosθ2



dσdΩ=α28E2(16p4sin4θ2+16E416p4cos4θ232E44p2sin2θ24p2cos2θ2+16p4cos4θ2+16E416p4sin4θ2)



dσdΩ=α28E2(16p4sin4θ2+16E416p4cos4θ232E44p2(sin2θ2+cos2θ2)+16p4cos4θ2+16E416p4sin4θ2)


dσdΩ=α28E2(16p4sin4θ216p4cos4θ2+16E416p4cos4θ232E44p2+16p4cos4θ216p4sin4θ2+16E416p4sin4θ2)


dσdΩ=α28E2(16p4sin4θ216p4cos4θ2+16E4sin4θ216p4cos4θ2sin4θ232E44p2+16p4cos4θ216p4sin4θ2+16E4cos4θ216p4sin4θ2cos4θ2)


dσdΩ=α28E2(tan4θ2+16E4sin4θ2p4sin4θ32E44p2+cot4θ2+16E4cos4θ2p4sin4θ)


dσdΩ=α28E2(tan4θ2+cot4θ232E44p2+16E4cos4θ2p4sin4θ+16E4sin4θ2p4sin4θ)


dσdΩ=α28E2(tan4θ2+cot4θ232E44p2+4E4(cos2θ+3)p4sin4θ)


dσdΩ=α28E2(tan4θ2+cot4θ232E44p2+4E4cos2θp4sin4θ+12E4p4sin4θ)


dσdΩ=α28E2(tan4θ2+cot4θ28E4p2+4E4(cos2θsin2θ)p4sin4θ+12E4p4sin4θ)


dσdΩ=α28E2(sin4θ(cosθ+1)4+sin4θ(cosθ1)48E4p2+4E4(cos2θsin2θ)p4sin4θ+12E4p4sin4θ)


dσdΩ=α28E2(sin4θ(cosθ1)4(cosθ+1)4(cosθ1)4+sin4θ(cosθ+1)4(cosθ1)4(cosθ+1)48E4p2+4E4(cos2θsin2θ)p4sin4θ+12E4p4sin4θ)


dσdΩ=α28E2(sin4θ(cosθ1)4sin8θ+sin4θ(cosθ+1)4sin8θ8E4p2+4E4(cos2θsin2θ)p4sin4θ+12E4p4sin4θ)


dσdΩ=α28E2((cosθ1)4sin4θ+(cosθ+1)4sin4θ8E4p2+4E4(cos2θsin2θ)p4sin4θ+12E4p4sin4θ)


dσdΩ=α28E2((2cos4θ+12cos2θ+2)sin4θ8E4sin4θp2sin4θ+4E4(cos2θsin2θ)p4sin4θ+12E4p4sin4θ)


dσdΩ=α24E2sin4θ((cos4θ+6cos2θ+1)14E4sin4θp2+2E4(cos2θsin2θ)p4+6E4p4)


dσdΩ=α24E2sin4θ(p4(cos4θ+6cos2θ+1)p44E4p2sin4θp4+2E4(cos2θsin2θ)p4+6E4p4)


dσdΩ=α24E2p4sin4θ(p4(cos4θ+6cos2θ+1)4E4p2sin4θ+2E4(cos2θsin2θ)+6E4)


dσdΩ=α24E2p4sin4θ(p4(cos4θ+6cos2θ+1)4E4p2sin4θ+2E4(12sin2θ)+6E4)


dσdΩ=α24E2p4sin4θ(p4(cos4θ+6cos2θ+1)4E4p2sin4θ4E4sin2θ+8E4)


E2m2+p2






Navigation_