Difference between revisions of "Scattered and Moller Electron Energies in CM Frame"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<center><math>\textbf{\underline{Navigation}}</math>
 
<center><math>\textbf{\underline{Navigation}}</math>
  
[[Limits_based_on_Mandelstam_Variables|<math>\vartriangleleft </math>]]
+
[[Total_Energy_in_CM_Frame|<math>\vartriangleleft </math>]]
 
[[VanWasshenova_Thesis#Initial_4-momentum_Components|<math>\triangle </math>]]
 
[[VanWasshenova_Thesis#Initial_4-momentum_Components|<math>\triangle </math>]]
[[Special_Case_of_Equal_Mass_Particles|<math>\vartriangleright </math>]]
+
[[Final_Lab_Frame_Moller_Electron_4-momentum_components_in_XZ_Plane|<math>\vartriangleright </math>]]
  
 
</center>
 
</center>
Line 76: Line 76:
 
<center><math>\textbf{\underline{Navigation}}</math>
 
<center><math>\textbf{\underline{Navigation}}</math>
  
[[Limits_based_on_Mandelstam_Variables|<math>\vartriangleleft </math>]]
+
[[Total_Energy_in_CM_Frame|<math>\vartriangleleft </math>]]
 
[[VanWasshenova_Thesis#Initial_4-momentum_Components|<math>\triangle </math>]]
 
[[VanWasshenova_Thesis#Initial_4-momentum_Components|<math>\triangle </math>]]
[[Special_Case_of_Equal_Mass_Particles|<math>\vartriangleright </math>]]
+
[[Final_Lab_Frame_Moller_Electron_4-momentum_components_in_XZ_Plane|<math>\vartriangleright </math>]]
  
 
</center>
 
</center>

Revision as of 01:52, 16 June 2017

[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]


Scattered and Moller Electron energies in CM

We can use the Mandelstam variable s, the square of the center of mass energy, to find [math]E^*[/math]

[math]s \equiv \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2[/math]


[math]s \equiv \mathbf P_1^{*2}+2 \mathbf P_1^* \mathbf P_2^*+ \mathbf P_2^{*2}[/math]


As shown earlier, the square of a 4-momentum is


[math]\mathbf P^{2} \equiv m^2[/math]

This gives,

[math]s \equiv m_1^{2}+2 \mathbf P_1^* \mathbf P_2^*+ m_2^{2}[/math]


For the case [math]m_1=m_2=m[/math]


[math]s \equiv 2m^{2}+2 \mathbf P_1^* \mathbf P_2^*[/math]

Using the relationship


[math]\mathbf P_1 \cdot \mathbf P_2 = E_{1}E_{2}-(\vec p_1 \vec p_2)[/math]


[math]s \equiv 2m^2+2(E_1^*E_2^*-\vec p \ _1^* \vec p \ _2^*)[/math]


In the center of mass frame of reference,

[math]E_1^*=E_2^* \quad and \quad \vec p \ _1^*=-\vec p \ _2^*[/math]


[math]s \equiv 2m^2+2E_1^{*2}+2\vec p_1 \ ^{*2} [/math]


Using the relativistic energy equation

[math]E^2 \equiv \vec p_1 \ ^2+m^2[/math]


[math]s \equiv 2m^2+2m^2+2\vec p_1 \ ^{*2}+\vec p_1 \ ^{*2})[/math]


[math]s=4(m^2+\vec p_1 \ ^{*2})=(2E_1^*)^{2}=E^{*2}[/math]


[math]\Rightarrow E_1=\frac{106.030760886 MeV}{2}=53.015380443 MeV=E_2[/math]





[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]