Difference between revisions of "Lab 4 TF EIM"

From New IAC Wiki
Jump to navigation Jump to search
 
(5 intermediate revisions by the same user not shown)
Line 2: Line 2:
  
 
= 1-50 kHz filter (20 pnts)=
 
= 1-50 kHz filter (20 pnts)=
# Design a high-pass RC filter with a break point between 1-50 kHz.  The break point is the frequency at which the filter's attenuation of the AC signal goes to 0(not passed).  For a High pass filter, AC signals with a frequency below the 1-50 kHz range will be attenuated .
+
1.) Design a high-pass RC filter with a break point between 1-50 kHz.  The break point is the frequency at which the filter's attenuation of the AC signal goes to 0(not passed).  For a High pass filter, AC signals with a frequency below the 1-50 kHz range will be attenuated .
#Now construct the circuit using a non-polar capacitor.
 
#use a sinusoidal variable frequency oscillator to provide an input voltage to your filter.
 
#Measure the input and output voltages for at least 8 different frequencies which span the frequency range from 1 Hz to 1 MHz.
 
#Graph the <math>\log \left(\frac{V_{out}}{V_{in}} \right)</math> -vs- <math>\log (\nu)</math>
 
  
 
[[File:TF_EIM_Lab4.png | 400 px]]
 
[[File:TF_EIM_Lab4.png | 400 px]]
 +
 +
2.) Now construct the circuit using a non-polar capacitor.
 +
 +
3.)use a sinusoidal variable frequency oscillator to provide an input voltage to your filter.
 +
 +
4.)Measure the input and output voltages for at least 8 different frequencies which span the frequency range from 1 Hz to 1 MHz.
 +
 +
{| border="3"  cellpadding="20" cellspacing="0"
 +
|<math>\nu</math> ||<math>V_{in}</math> || <math>V_{out}</math> || <math>\frac{V_{out}}{V_{in}}</math>
 +
|-
 +
| Hz || Volts || Volts ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|  || || ||
 +
|-
 +
|}
 +
 +
#
 +
5.)Graph the <math>\log \left(\frac{V_{out}}{V_{in}} \right)</math> -vs- <math>\log (\nu)</math>
  
 
=phase shift (10 pnts)=
 
=phase shift (10 pnts)=
Line 16: Line 52:
  
 
#compare the theoretical and experimentally measured break frequencies. (5 pnts)
 
#compare the theoretical and experimentally measured break frequencies. (5 pnts)
#Calculate and expression for <math>\frac{V_{out}}{ V_{in}}</math> as a function of <math>\nu</math>, <math>R</math>, and <math>C</math>.(5 pnts)
+
#Calculate an expression for <math>\frac{V_{out}}{ V_{in}}</math> as a function of <math>\nu</math>, <math>R</math>, and <math>C</math>.(5 pnts)
 
#Compare the theoretical and experimental value for the phase shift <math>\theta</math>. (5 pnts)
 
#Compare the theoretical and experimental value for the phase shift <math>\theta</math>. (5 pnts)
#Sketch the phasor diagram for <math>V_{in}</math>,<math> V_{out}</math>, <math>V_{R}</math>, and <math>V_{C}</math>. Put the current <math>i</math> along the real voltage axis. (30 pnts)
+
#Sketch the phasor diagram for <math>V_{in}</math>,<math> V_{out}</math>, <math>V_{R}</math>, and <math>V_{C}</math>. (30 pnts)
 
# what is the phase shift <math>\theta</math> for a DC input and a very-high frequency input?(5 pnts)
 
# what is the phase shift <math>\theta</math> for a DC input and a very-high frequency input?(5 pnts)
 
# calculate and expression for the phase shift <math>\theta</math> as a function of <math>\nu</math>, <math>R</math>, <math>C</math> and graph <math>\theta</math> -vs <math>\nu</math>. (20 pnts)
 
# calculate and expression for the phase shift <math>\theta</math> as a function of <math>\nu</math>, <math>R</math>, <math>C</math> and graph <math>\theta</math> -vs <math>\nu</math>. (20 pnts)

Latest revision as of 20:02, 29 January 2015

RC High-pass filter

1-50 kHz filter (20 pnts)

1.) Design a high-pass RC filter with a break point between 1-50 kHz. The break point is the frequency at which the filter's attenuation of the AC signal goes to 0(not passed). For a High pass filter, AC signals with a frequency below the 1-50 kHz range will be attenuated .

TF EIM Lab4.png

2.) Now construct the circuit using a non-polar capacitor.

3.)use a sinusoidal variable frequency oscillator to provide an input voltage to your filter.

4.)Measure the input and output voltages for at least 8 different frequencies which span the frequency range from 1 Hz to 1 MHz.

[math]\nu[/math] [math]V_{in}[/math] [math]V_{out}[/math] [math]\frac{V_{out}}{V_{in}}[/math]
Hz Volts Volts

5.)Graph the [math]\log \left(\frac{V_{out}}{V_{in}} \right)[/math] -vs- [math]\log (\nu)[/math]

phase shift (10 pnts)

  1. measure the phase shift between [math]V_{in}[/math] and [math]V_{out}[/math]

Questions

  1. compare the theoretical and experimentally measured break frequencies. (5 pnts)
  2. Calculate an expression for [math]\frac{V_{out}}{ V_{in}}[/math] as a function of [math]\nu[/math], [math]R[/math], and [math]C[/math].(5 pnts)
  3. Compare the theoretical and experimental value for the phase shift [math]\theta[/math]. (5 pnts)
  4. Sketch the phasor diagram for [math]V_{in}[/math],[math] V_{out}[/math], [math]V_{R}[/math], and [math]V_{C}[/math]. (30 pnts)
  5. what is the phase shift [math]\theta[/math] for a DC input and a very-high frequency input?(5 pnts)
  6. calculate and expression for the phase shift [math]\theta[/math] as a function of [math]\nu[/math], [math]R[/math], [math]C[/math] and graph [math]\theta[/math] -vs [math]\nu[/math]. (20 pnts)


Forest_Electronic_Instrumentation_and_Measurement