Difference between revisions of "Forest Relativity Notes"

From New IAC Wiki
Jump to navigation Jump to search
 
(225 intermediate revisions by 2 users not shown)
Line 7: Line 7:
  
 
The relationship between the coordinate<math> (x,y,z,ct)</math> of an object in frame <math>S</math> to the same object described using the coordinates <math>(x^{\prime},y^{\prime},z^{\prime},ct^{\prime})</math> in frame <math>S^{\prime}</math> is geven by the Lorentz transformation:
 
The relationship between the coordinate<math> (x,y,z,ct)</math> of an object in frame <math>S</math> to the same object described using the coordinates <math>(x^{\prime},y^{\prime},z^{\prime},ct^{\prime})</math> in frame <math>S^{\prime}</math> is geven by the Lorentz transformation:
 +
 +
== Notation==
 +
The relativistic transformation used to transform the coordinates of an object observed in the rest frame <math>S</math> to a moving reference frame<math> S^{\prime}</math> is given by:
  
 
:<math>x^{\mu^{\prime}} = \sum_{\nu=0}^3 \Lambda_{\nu}^{\mu} x^{\nu}</math>
 
:<math>x^{\mu^{\prime}} = \sum_{\nu=0}^3 \Lambda_{\nu}^{\mu} x^{\nu}</math>
Line 17: Line 20:
 
:<math>x^3\equiv z</math>
 
:<math>x^3\equiv z</math>
 
: <math>\Lambda = \left [ \begin{matrix} \gamma  & -\gamma \beta & 0 & 0 \\ -\gamma \beta & \gamma &0 &0 \\ 0 &0 &1 &0 \\ 0 &0 &0 &1\end{matrix} \right ]</math>
 
: <math>\Lambda = \left [ \begin{matrix} \gamma  & -\gamma \beta & 0 & 0 \\ -\gamma \beta & \gamma &0 &0 \\ 0 &0 &1 &0 \\ 0 &0 &0 &1\end{matrix} \right ]</math>
:<math>\beta = \frac{v}{c}</math>
+
:<math>\beta = \frac{v}{c} = \frac{pc}{E}</math>
: <math>\gamma = \frac{1}{\sqrt{1 -\beta^2}}</math>
+
: <math>\gamma = \frac{1}{\sqrt{1 -\beta^2}} = \frac{E_{tot}}{mc^2}</math>
 +
 
 +
;NOTE:  It is common in particle physics to define <math> c \equiv 1</math>  making <math>\gamma = \frac{E}{m}</math> where <math>m</math> is in units of <math>\frac{\mbox{MeV}}{\mbox{c}^2}</math>
  
 
;example
 
;example
Line 32: Line 37:
  
 
: in the example above the<math> \nu</math> symbol is repeated thereby indicating a summation over <math>\nu</math>.
 
: in the example above the<math> \nu</math> symbol is repeated thereby indicating a summation over <math>\nu</math>.
 +
 +
== Momentum 4-vector ==
 +
 +
The momentum 4 -vector is denoted as:
 +
 +
:<math>p^{\mu} \equiv (\frac{E}{c} , \vec{p})</math>
 +
:<math>p_{\mu} \equiv (\frac{E}{c} , -\vec{p})</math>
 +
 +
:<math>p_{\mu}p^{\mu} = \frac{E^2}{c^2} - p^2 \equiv E^2 - p^2 = m^2</math>
 +
 +
;Note:  There is another convention used for 4-vector notation by Perkins and Koller which goes like this
 +
: <math>p^{\mu} \equiv (\vec{p},iE)</math>
 +
: <math>p_{\mu} \equiv (\vec{p},iE)</math>
 +
 +
== Trig Method==
 +
 +
Another way to represent the Lorentz transformation is by using the substitution
 +
 +
: <math>\sin (\alpha) \equiv \beta \equiv \frac{v}{c}</math>
 +
: <math>\cos(\alpha) \equiv \frac{1}{\gamma} \equiv \sqrt{1 - \beta^2}</math>
 +
 +
;The Matrix form of the tranformation looks like
 +
 +
:<math>\left ( \begin{matrix} ct^{\prime} \\ x^{\prime} \\ y^{\prime} \\ z^{\prime} \end{matrix} \right )= \left [ \begin{matrix} \sec(\alpha)  & -\tan(\alpha) & 0 & 0 \\ -\tan(\alpha) & \sec(\alpha) &0 &0 \\ 0 &0 &1 &0 \\ 0 &0 &0 &1\end{matrix} \right ] \left ( \begin{matrix} ct \\ x \\ y \\ z \end{matrix} \right )</math>
 +
 +
; Or the reverse transformation
 +
 +
:<math>\left ( \begin{matrix} ct \\ x \\ y \\ z \end{matrix}\right )= \left [ \begin{matrix} \sec(\alpha)  & \tan(\alpha) & 0 & 0 \\ \tan(\alpha) & \sec(\alpha) &0 &0 \\ 0 &0 &1 &0 \\ 0 &0 &0 &1\end{matrix} \right ] \left ( \begin{matrix} ct^{\prime} \\ x^{\prime} \\ y^{\prime} \\ z^{\prime} \end{matrix}  \right )</math>
 +
 +
;Notice that you just needed to change the signs for the inverse matrix <math>\Lambda^{-1}</math>
  
 
=Proper Time and Length=
 
=Proper Time and Length=
Line 37: Line 72:
 
==Proper Time==
 
==Proper Time==
  
;Proper Time : The time measured in the rest frame of the clock.  The time interval is measured at the same x,y,z coordinates because the clock chose is in a frame which is not moving (rest frame).
+
;Proper Time <math>\Tau</math> : The time measured in the rest frame of the clock.  The time interval is measured at the same x,y,z coordinates because the clock chose is in a frame which is not moving (rest frame).
 +
 
 +
The time given in any frame (t) = <math>\gamma \Tau</math>
 +
 
 +
;Note: since <math>\gamma > 1</math> you expect the Proper time interval to be the smallest
  
 
== Proper Length==
 
== Proper Length==
  
; Proer Length:  An object length in the object's rest frame.
+
; Proper Length<math> (c\Tau)</math>The length of an object in the object's rest frame.
  
 
=Invariant Length=
 
=Invariant Length=
 +
 +
=Transformation Examples=
 +
 +
 +
== Decay of a Particle at Rest to 2 Bodies==
 +
 +
Consider the decay of the <math>\rho_0</math> meson of mass <math>M</math> at rest into two pions (<math>\pi^+</math> and <math>\pi^-</math> ) of mass <math>m_1</math> and <math>m_2</math> respectively.
 +
 +
 +
[[Image:NeutralRhoMesonDecayDiagram.jpg]]
 +
 +
The diagram above shows a <math>\rho_0</math> meson  at rest in the lab which then decays into two pions of momentum <math>p_1</math> and <math>p_2</math> in the center of momentum frame of the <math>\rho_0</math> meson.
 +
 +
Our goal is to determine the momentum and energy of each pion (<math>E_1</math> & <math>E_2</math>) resulting from the decay of the Mother particle.
 +
 +
Conservation of 4-Momentum implies that if <math>P^{\mu}</math> represents the total momentum of the system before the decay then
 +
 +
:<math>P^{\mu} = (E,0) =(M,0) = \left ( p_1 \right )^{\mu} + \left ( p_2 \right)^{\mu}</math>
 +
:<math>\Rightarrow 0 = \vec{p}_1 + \vec{p}_2</math>
 +
 +
or
 +
 +
: <math>\vec{p}_1 = - \vec{p}_2</math>
 +
 +
Let
 +
: <math>p \equiv |\vec{p}_1 | = |\vec{p}_2 |</math>
 +
 +
Conservation of Energy
 +
:<math>\Rightarrow E_{tot} = M = E_1 + E_2 = \sqrt{m_1^2 + p^2} + \sqrt{m_2^2 + p^2}</math>
 +
 +
solving for p
 +
 +
:<math>\Rightarrow p = \frac{1}{2M} \sqrt{[M^2 - (m_1-m_2)^2][M^2-(m_1+m_2)^2]}</math>
 +
: <math>\Rightarrow M \ge m_1 + m_2</math>  is required to avoid the unphysical condition that the momentum of the particles after a decay would be an imaginary number
 +
 +
Using
 +
 +
:<math>p \equiv |\vec{p}_1 | = |\vec{p}_2 |</math>
 +
: <math>E_1^2 - m_1^2 = E_2^2 - m_2^2</math>
 +
:<math>\Rightarrow E_2 = \sqrt{E_1^2 - m_1^2 + m_2^2}</math>
 +
 +
Combine this with the conservation of energy equation above:
 +
 +
:<math> E_1 + E_2 = E_1 + \sqrt{E_1^2 - m_1^2 + m_2^2} = M</math>
 +
: <math>\Rightarrow E_1 - M = \sqrt{E_1^2 - m_1^2 + m_2^2}</math>
 +
 +
Square both sides of the above equation
 +
 +
: <math>E_1^2 -2ME_1 + M^2 = E_1^2- m_1^2 + m_2^2</math>
 +
:<math>\Rightarrow E_1 = \frac{M^2+m_1^2-m_2^2}{2M}</math>
 +
 +
Similarly
 +
 +
:<math> E_2 = \frac{M^2+m_2^2-m^2_1}{2M}</math>
 +
 +
 +
;Note: <math>\vec{p}_1 = -\vec{p}_2</math>
 +
:<math>\Rightarrow</math> The daughter particles (pions) from the decay of the Mother particle <math>(\rho)</math>  travel in opposite directions with respect to eachother ( ie; they are "back - to -back")
 +
: This means that there is no preferential direction for the decay (the particles are distributed isotropically such that they are back-to-back)
 +
 +
== Decay of Moving Particle to 2 Bodies (decay in flight)==
 +
:<math>P^{\mu} = (E,\vec{p}_{tot}) =(M,\vec{p}_{tot}) = \left ( p_1 \right )^{\mu} + \left ( p_2 \right)^{\mu}</math>
 +
 +
Assuming that the Mother particle is moving along the Z-axis, then the momentum of the daughter particles perpendicular to the Z-axis (transverse components:<math>\vec{p}_{1,\perp}</math> and <math>\vec{p}_{2,\perp}</math>) are equal and opposite by conservation of momentum.
 +
 +
:<math>\vec{p}_{1,\perp}\equiv -\vec{p}_{2,\perp}</math>
 +
 +
The center of momentum frame is moving such that
 +
 +
: <math>\beta_{CM} = \frac{p_{tot}}{M}</math>
 +
: <math>\gamma_{CM} = \frac{E_{tot}}{M}</math>
 +
 +
A Lorentz transformation of the kinematics for particle 1 between the Center of Momentum (cm) frame and the lab is given by:
 +
 +
:<math>E_1 = \gamma_{cm}(E_1^{CM} + \beta_{cm}p_{1,z}^{CM})</math>
 +
:<math>p_{1,z} = \gamma_{CM}(p_{1,z}^{CM} + \beta_{cm} E_1^{CM})</math>
 +
:<math>p_{1,\perp} = p_{\perp}^{CM}</math>
 +
 +
where
 +
 +
:<math>E_1^{CM}</math> = Kinetic Energy (not total) of particle 1 in the center of momentum (CM) reference frame
 +
:<math>p_{1,z}^{CM}</math> = momentum of particle 1 along the direction of the mother particle in the CM frame
 +
:<math>p_{1,\perp}</math> = the component of particle 1's momentum perpendicular to Mother particle's momentum
 +
 +
;You can now use the results for <math>E_1</math> and <math>p_1=p</math> from the previous section where the Mother particle is at rest to determine the kinematics of the particles in the lab frame given that you know the initial 4-Momentum of the mother particle.  You will need to specify the daugher decay angles in the CM frame in order to find the momentum components <math>p_z</math> and <math>p_{\perp}</math>.
 +
 +
;It can be shown that the lab angle for daughter particle 1 (<math>\theta_1</math>) is given by
 +
:<math>\tan(\theta_1) = \frac{\sin(\theta_1^{CM})}{\gamma_{CM}\left (\frac{\beta_{CM}}{\beta_1^{CM}} + \cos(\theta_1^{CM}) \right )}</math>
 +
 +
where
 +
 +
:<math>\beta_1^{CM} = \frac{p_1}{E} = \beta</math> for daughter particle 1 in CM frame.
 +
 +
One could also find <math>\vec{p}_1</math> without using the Lorentz transformation.  Just use conservation of Energy and Momentum:
 +
 +
:<math>E_{tot} = E_1^{tot} + E_2^{tot} = \sqrt{m_1^2 + p_1^2} + \sqrt{m_2^2 + p_2^2}</math>
 +
: <math>\vec{p_{tot}} = \vec{p}_1 + \vec{p}_2</math>
 +
 +
Solve the conservation of momentum equation for <math>p_2^2</math>
 +
 +
:<math>p_2^2 = (\vec{p_{tot}}- \vec{p}_1)^2
 +
</math>
 +
 +
and substitute the above for <math>p_2^2</math> in the Conservation of Energy equation above.  The dot product gives you the angle between the daughter momentum and the Mother momentum (<math>\theta_1</math>) as a variable.  After a lot of algebra you can show that
 +
 +
:<math>p_1 = \frac{\left ( M^2 + m_1^2 -m_2^2 \right ) p_{tot} \cos(\theta_1) \pm 2E\sqrt{M^2p^2 - m_1^2p^2_{tot} \sin^2(\theta_1)}}{2 \left( M^2 + p^2 \sin^2(\theta_1)\right )}</math>
 +
 +
;Note: <math>p</math> is the momentum of the two daughter particles in the CM frame which was derived when the Mother particle was at rest. <math>p_{tot}</math> is the momentum of the Mother particle.
 +
 +
 +
In order for a real solution
 +
 +
:<math>M^2p^2 - m_1^2p^2_{tot} \sin^2(\theta_1) \ge 0</math>
 +
: <math>\Rightarrow \frac{M p}{m_1 p_{tot}} \ge \sin(\theta_1)</math>
 +
 +
 +
If <math>\frac{M p}{m_1 p_{tot}} > 1</math> then <math>\theta_1</math> can be any angle and the "-" sign possibility in "<math>\pm</math>" is rejected to avoided negative values for <math>p_1</math> when <math>\theta_1</math> > <math>\frac{\pi}{2}</math>.
 +
 +
 +
If <math>\frac{M p}{m_1 p_{tot}} < 1</math> then the maximum emmission angle for daughter 1 is given by
 +
:<math>\sin(\theta_1^{max}) = \frac{M p}{m_1 p_{tot}}</math>
 +
 +
The "<math>\pm</math>" is kept because for each <math>\theta_1 < \theta_1^{max}</math> there are two possible trajectories for daughter particle 1 and as a result 2 trajectories for daughter particle 2.
 +
 +
== Decay of Particle to 3 Bodies (Dalitz plot)==
 +
 +
Now lets consider the case where a Mother particle of mass <math>M</math> decays into 3 daughter particles of masses <math>m_1</math>, <math>m_2</math>, and <math>m_3</math>.  The 4-mometum conservation is written as
 +
 +
:<math>P^{\mu} = \left ( p_1 \right )^{\mu} +\left ( p_2 \right )^{\mu} +\left ( p_3 \right )^{\mu}</math>
 +
 +
The following invariants are defined
 +
 +
:<math>s = P_{\mu}P^{\mu} = M^2</math>
 +
:<math>s_1 = \left (P -p_1 \right)_{\mu}\left (P -p_1 \right)^{\mu}=\left (p_2 + p_3 \right)_{\mu}\left (p_2 + p_3 \right)^{\mu}</math>
 +
:<math>s_2 = \left (P -p_2 \right)_{\mu}\left (P -p_2 \right)^{\mu}=\left (p_3 + p_1 \right)_{\mu}\left (p_3 + p_1 \right)^{\mu}</math>
 +
:<math>s_3 = \left (P -p_3 \right)_{\mu}\left (P -p_3 \right)^{\mu}=\left (p_1 + p_2 \right)_{\mu}\left (p_1 + p_2 \right)^{\mu}</math>
 +
 +
The invariants <math>s_1</math>, <math>s_2</math> and <math>s_3</math> are not independent (the motivation for what is known as a Dalitz plot).  Based on the definitions of these invariants and 4-momentum conversation one can show that
 +
 +
:<math>s_1 + s_2 + s_3 = (P^2 -2Pp_1 +p_1^2) +(P^2 -2Pp_2 +p_2^2) + (P^2 -2Pp_3 +p_3^2)</math>
 +
: <math>=3P^2 -2P(p_1+p_2+p_3) +p_1^2+p_2^2+p_3^2</math>
 +
: <math>=3P^2 -2P^2  +p_1^2+p_2^2+p_3^2</math>
 +
:<math>=P^2  +p_1^2+p_2^2+p_3^2</math>
 +
:<math>=M^2 + m_1^2 + m_2^2 +m_3^2</math>
 +
 +
 +
;Also Note: <math>\sqrt{s_1}</math> is the invariant mass of a subsystem defined by treating daughter particles 2 and 3 as one object.  similar interpretations for <math>\sqrt{s_2}</math> and <math>\sqrt{s_3}</math>.
 +
 +
 +
There are limits to the values of the invariant masses <math>s_1</math> - <math>s_3</math>
 +
 +
In the Center of Momentum system we have the
 +
 +
:<math>s_1 = M^2 +m_1^2 - 2ME_1</math>
 +
 +
because
 +
 +
:<math>E_1 = m_1^2 + p_1^2</math> we expect <math>E_1 \ge m_1</math>
 +
 +
This lead to
 +
 +
:<math>\left . s_1 \right |_{max} = M^2 +m_1^2 - 2M(m_1) = (M-m_1)^2</math>
 +
 +
 +
TO find the minimum value of <math>s_1</math> we evaluate <math>s_1</math> in the rest frame of the <math>m_2</math>, <math>m_3</math> subsystem.
 +
 +
:<math>s_1 = \left (p_2 + p_3 \right)_{\mu}\left (p_2 + p_3 \right)^{\mu}= (E_2^{cm2-3} +E_3^{cm2-3})^2 > (m_2 + m_3)^2</math> : In the CM frame <math>E = \sqrt{p^2 +m^2} = m</math>
 +
 +
so the limits of s_1 are
 +
 +
: <math>(m_2 + m_3)^2 \le s_1 \le (M-m_1)^2</math>
 +
 +
=== Invariant mass Dalitz plot Limits ===
 +
 +
Analagously you can show the the Min - Max limits for the <math>s_1</math>, <math>s_2</math>, and <math>s_3</math> invariant masses are given by.
 +
 +
: <math>(m_3 + m_1)^2 \le s_2 \le (M-m_2)^2</math>
 +
: <math>(m_1 + m_2)^2 \le s_3 \le (M-m_3)^2</math>
 +
 +
set theory notation is often used to express the above limits as
 +
 +
:<math>s_1 \in \left [ (m_2 + m_3)^2 , (M-m_1)^2 \right ]</math>
 +
:<math>s_2 \in \left [ (m_3 + m_1)^2 , (M-m_2)^2 \right  ]</math>
 +
:<math>s_2 \in \left [ (m_1 + m_2)^2, (M-m_3)^2 \right  ]</math>
 +
 +
=== Dalitz plot boundary curve equation ===
 +
 +
Suppose we wish to plot a curve which describes the depence of s_1 on s_2 (determine s_2 as a function of s_1).  This is refered to as a Dalitz plot in which <math>s_2</math> appears on the x-axis (abscissa) and <math>s_1</math> appears on the y-axis (ordinate).  Becuase of the "squares" in the invariant mass, we can have two values of <math>s_2</math> for a given value of <math>s_1</math>.   
 +
 +
since
 +
 +
:<math>s_2 = \left (p_3 + p_1 \right)_{\mu}\left (p_3 + p_1 \right)^{\mu}</math>
 +
 +
We should look seek equations for <math>p_1</math> and <math>p_3</math> in terms of masses<math>(M,m_1,m_2,m_3)</math> and invariants <math>(s,s_1)</math>.
 +
 +
In order to find such expressions lets consider the problem as viewed by a reference frame in which <math>\vec{p}_3</math> = -<math>\vec{p}_2</math>.  This reference frame is sometimes referred to as the Jackson Frame (JF).
 +
 +
In the JF frame
 +
 +
:<math>\vec{P}^{JF} = \vec{p}_1^{JF}</math> : because the other two particles cancel the total momentum of the system is carried by <math>m_1</math>.
 +
 +
:<math>s_1 \equiv = \left (P -p_1 \right)_{\mu}\left (P -p_1 \right)^{\mu}</math>
 +
:<math>=\left [ (E,-\vec{P}) - (E_1,-\vec{p_1})\right ]\left [ (E,\vec{P}) - (E_1,\vec{p}_1)\right ]</math>
 +
:<math>=\left [ (E^{JF},-\vec{P}^{JF}) - (E_1^{JF},-\vec{p}_1^{JF})\right ]\left [ (E^{JF},\vec{P}^{JF}) - (E_1^{JF},\vec{p}_1^{JF})\right ]</math>
 +
: <math>= (E^{JF}-E_1^{JF})^2 : \vec{P}^{JF}=\vec{p}_1^{JF}</math>
 +
:=<math>\left( \sqrt{M^2+(P^{JF})^2} - \sqrt{m^2+(p_1^{JF})^2}\right)</math> : Def of <math>E_{tot}</math>
 +
:=<math>\left( \sqrt{M^2+(p_1^{JF})^2} - \sqrt{m^2+(p_1^{JF})^2}\right)</math>
 +
 +
where
 +
 +
:<math>E^{JF}</math> = total energy of Mother particle before it decays
 +
:<math>E_1^{JF}</math> = total energy of <math>m_1</math> particle
 +
 +
solving for <math>p_1^{JF}</math>
 +
 +
:<math>\left( p_1^{JF}\right )^2 = \frac{1}{4s_1} \left [ s_1 -(M-m_1)^2\right ]\left [ s_1 -(M+m_1)^2\right ]</math>
 +
 +
 +
The function <math>\lambda</math> is defined such that
 +
 +
:<math>\lambda(A,B^2,C^2) = \left [ A -(B-C)^2\right ]\left [ A -(B+C)^2\right ]</math> : notice the "squared" arguments
 +
:<math>=A^2 + B^2 + C^2 -2AB -2BC -2CA
 +
</math>
 +
since this solution above is so common in relativistic kinematics
 +
 +
:<math>\Rightarrow \left( p_1^{JF}\right )^2 = \frac{1}{4s_1}\lambda(s_1,M^2,m_1^2)
 +
</math>
 +
 +
Doing an analogous calculation for the other form os s_1
 +
 +
:<math>s_1 =\left (p_2 + p_3 \right)_{\mu}\left (p_2 + p_3 \right)^{\mu}</math>
 +
 +
we will find
 +
 +
: <math>p_2^{JF} = p_3^{JF} = \frac{1}{4s_1}\lambda(s_1,m^2,m_3^2)</math>
 +
 +
Lets substitute <math>p_1</math> and <math>p_3</math> into the definition for <math>s_2</math> in the Jackson Frame.
 +
 +
:<math>s_2 = \left (p_3 + p_1 \right)_{\mu}\left (p_3 + p_1 \right)^{\mu}</math>
 +
:<math>=\left (p_3^{JF} + p_1^{JF} \right)_{\mu}\left (p_3^{JF} + p_1^{JF} \right)^{\mu}</math>
 +
:<math>=\left [ (E_1^{JF},-\vec{p}_1^{JF}) + (E_3^{JF},-\vec{p}_3^{JF})\right]\left [ (E_1^{JF},\vec{p}_1^{JF}) + (E_3^{JF},\vec{p}_3^{JF})\right]</math>
 +
:<math>= m_1^2 +m_3^2 + 2\left ( E_1^{JF} E_3^{JF} - p_1^{JF} p_2^{JF} \cos(\theta_{13})\right )</math>
 +
 +
where
 +
 +
:<math>\cos(\theta_{13})</math> = angle between <math>\vec{p}_1^{JF}</math> and <math>\vec{p}_3^{JF}</math>
 +
 +
<math>p_1^{JF}</math> and <math>p_2^{JF}</math> are given above we just need to figure out what <math>E_1^{JF}</math> and <math>E_2^{JF}</math> are
 +
 +
 +
If we assume <math>s_1</math> is fixed (you generate the Dalitz plot boundary by determining the two values of <math>s_2</math> for a given value of <math>s_1</math>) then
 +
 +
:<math>E_1^{JF} = \frac{1}{2\sqrt{s_1}} (M^2 - s_1 -m_1^2)</math>
 +
:<math>E_3^{JF} = \frac{1}{2\sqrt{s_1}} (s_1 + m_3^2 -m_2^2)
 +
</math>
 +
 +
The only remaining unkown is the angle <math>(\alpha)</math> between math>\vec{p}_1^{JF}</math> and <math>\vec{p}_3^{JF}</math> which we can treat as either <math>\pi</math> or 0 to determine the min and max values of s_2 for a given value of 2_1.
 +
 +
:<math>s_2= m_1^2 +m_3^2 + 2\left ( E_1^{JF} E_3^{JF} - p_1^{JF} p_2^{JF} \cos(\theta_{13})\right )</math>
 +
:<math>= m_1^2 +m_3^2 + 2\left ( E_1^{JF} E_3^{JF} \pm p_1^{JF} p_2^{JF} \right )</math>
 +
:<math>= m_1^2 +m_3^2 + 2\left ( \frac{1}{2\sqrt{s_1}} (M^2 - s_1 -m_1^2) \frac{1}{2\sqrt{s_1}} (s_1 + m_3^2 -m_2^2) \pm p_1^{JF} p_2^{JF} \right )</math>
 +
 +
Substituting for <math>p_1^{JF}</math> and  <math>p_2^{JF}</math>
 +
:<math>s_2=m_1^2 +m_3^2 + \frac{1}{s_1} \left ((M^2 - s_1 -m_1^2)(s_1 + m_3^2 -m_2^2) \pm \sqrt{\lambda(s_1,M^2,m_1^2) \lambda(s_1,m_2^2,m_3^2)}\right )</math>
 +
 +
The above equation for <math>s_2</math> defines a boundary line of the Dalitz plot.  The kinematics of the particles in constrained to the interior of this bounding.
 +
 +
===Example:<math> D_s^+</math> Meson decay===
 +
 +
Consider the <math>D_s^+</math> meson which decays <math>\sim</math> 5\% of the time into three particles;  <math>K^+K^-\pi^+</math>
 +
 +
:<math>M =1969 MeV</math> for a<math> D_s^+</math> Meson
 +
:<math>m_1 = 494 MeV</math> for a <math> K^+</math>
 +
:<math> m_2 = 140 MeV</math>  is a <math>\pi^+</math>
 +
:<math> m_3=494 MeV</math> is a <math>K^-</math>
 +
 +
 +
Dalitz Plot limits are:
 +
 +
:X-axis<math> (s_2)</math>
 +
:Min = <math>(m_3 + m_1)^2 = (988 MeV)^2 \; \sim 1 GeV^2</math>
 +
:Max = <math>(M-m_2)^2 = (1829 MeV)^2 = 3.35 GeV^2</math>
 +
 +
:Y-axis <math>(s_1)</math>
 +
:Min <math>(m_2+m_3)^2 \; \sim (634 MeV)^2 = 0.402 GeV^2</math>
 +
:Max= <math>(M-m_1)^2 = (1475 MeV)^2 = 2.2 GeV^2</math>
 +
 +
The image below is from experiment E698
 +
 +
[[Image:DalitzPlot_Dsplus-to-KKPi.jpg]]
 +
 +
Notice the dark bands which have been labeled <math>\phi(1020)</math> and <math>\bar{K}^{*0}(892)</math>.  These dark bands indicate a tendency for the decay to clump into states with specific masses, namely <math>s_2=1.04 GeV^2 (\Rightarrow m=1020 MeV)</math> and <math>s_1=0.796 GeV^2 (\Rightarrow m= 892 MeV^2)</math>.  The isobar model suggests that the <math>D_s^+</math> decays into two particles and then a third particle.  In one case the decay is
 +
 +
:<math>D_s^+ \rightarrow \phi^0 + \pi^+</math>
 +
 +
and then the <math>\phi</math> decays via
 +
 +
:<math>\phi^0 \rightarrow K^+ + K^-</math>
 +
 +
Notice that the dark bands are not infinitely thin but have widths as well.  The uncertainty principle (<math>\Delta E \Delta t > \hbar</math>) suggest that only a particle with an infinite lifetime can have a finite , well defined, mass.  The width of these dark bands can be used to determine the lifetimes of the intermediate <math>\phi</math> and <math>\bar{K}^{*0}</math> states.
 +
 +
Also notice that there are 2 "clumps" of darks spots in each dark band.  The limits for <math>s_2</math> where based on Min/Max values of the <math>\cos(\theta_{13})</math> term.  This term tells us how aligned or misaligned the momentum vecors of <math>m_1</math> and <math>m_3</math> (the Kaons)are.
 +
 +
== Elastic Scattering==
 +
 +
[[Image:ForestRelativity_ElasticScateringDiagram.jpg]]
 +
 +
 +
Given the elastic scattering of 2 particles such that the following properties are
 +
 +
;Known
 +
: <math>m_1</math> = mass of the incident particle #1
 +
:<math>m_2</math> = mass of the target particle (at rest) #2
 +
: <math>p_1</math> = momentum of the incident particle #1
 +
:<math>\theta_1</math> = scattering angle of particle #1
 +
 +
You can show that
 +
 +
:<math>p_1^{\prime} = \frac{-B \pm \sqrt{B^2 -4AC}}{2A}</math> = Final momentum of scattered particle #1
 +
:<math>p_2^{\prime} = \left ( p_1^{\prime} \right )^2 -2p_1p_1^{\prime}\cos(\theta_1) + p_1^2</math> = Final momentum of the target particle
 +
: <math>\sin (\theta_2) = - \frac{p_1^{\prime} \sin(\theta_1)}{p_2^{\prime}}</math>
 +
 +
where
 +
 +
:<math>A = \left ( \sqrt{p_1^2 +m_1^2} +m_2 \right )^2 -p_1^2 \cos^2(\theta_1)</math>
 +
:<math>B = -2p_1 \cos(\theta_1) \left ( m_1^2 + m_2 \sqrt{p_1^2 + m_1^2}\right )</math>
 +
:<math>C = - \left [ m_1^4 + (m_2^2 -m_1^2)(p_1^2 + m_1^2) -m_1^2m_2^2\right ]</math>
 +
 +
== In-Elastic Scattering==
 +
 +
[[Image:ForestRelativity_InelasticScatDiagram.jpg]]
 +
 +
;List of 4-vectors
 +
:<math>q^{\mu} \equiv ( \omega , \vec{q} )</math> = momentum transfered from incident particle to target
 +
:<math>k_i^{\mu} \equiv (E_i, \vec{k}_i )</math> = initial momentum of incident particle
 +
:<math>k_f^{\mu} \equiv (E_f, \vec{k}_f )</math> = final momentum of incident particle
 +
 +
 +
 +
: <math>q^{\mu} \equiv k_i^{\mu} - k_f^{\mu}</math> = definition of momentum transfer based on conservation of momentum
 +
=== Momentum Transfer Squared <math>(Q^2)</math>===
 +
 +
The momentum transfer squared is given by
 +
 +
:<math>q_{\mu}q^{\mu} = (E_i - E_f)^2 -(\vec{k}_i - \vec{k}_f ) (\vec{k}_i - \vec{k}_f )</math>
 +
:<math>=(E_i^2 -2E_iE_f +F_f^2) - ( |\vec{k}_i |^2 - 2 |\vec{k}_i| |\vec{k}_f| \cos(\theta) + | k_f |^2)</math>
 +
 +
:<math>E^2 = | \vec{k} |^2 +m^2 </math>
 +
 +
:<math>\Rightarrow q_{\mu}q^{\mu} = \left ( | \vec{k}_i |^2 +m_i^2 - 2 E_i E_f +| \vec{k}_f |^2 +m_f^2\right ) - | \vec{k}_i |^2 - | \vec{k}_f |^2 + 2 | \vec{k}_i | | \vec{k}_f |^2 \cos(\theta)</math>
 +
: <math>= m_i^2 + m_f^2 - 2 E_i E_f + 2| \vec{k}_i | | \vec{k}_f |^2 \cos(\theta)
 +
</math>
 +
 +
 +
In the case of electron scattering
 +
 +
:<math>m_i = m_f</math>
 +
:<math>E_i \sim | \vec{k}_i |</math>
 +
:<math>E_f \sim | \vec{k}_f |</math>
 +
: <math>m \ll E</math>
 +
 +
:<math>\Rightarrow q^2 = -2 | \vec{k}_i | | \vec{k}_f | \left ( 1 - \cos (\theta) \right )</math>
 +
: <math>= -4 | \vec{k}_i | | \vec{k}_f | \sin^2(\frac{\theta}{2}) \equiv -4 E_i E_f \sin^2(\frac{\theta}{2})</math>
 +
 +
if<math> q^2 < 0 \Rightarrow</math> spacelike (scattering)
 +
 +
if <math>q^2 > 0 \Rightarrow</math> timelike (free particle)
 +
 +
The Momentum Transfer squared for scattering is define as <math>Q^2</math> such that
 +
 +
: <math>Q^2 = -q^2</math>
 +
 +
=== Missing Mass <math>(W)</math>===
 +
 +
Consider an inelastic scattering process where the particles have the 4-Momentum vectors defined as
 +
 +
: <math>\left ( p_e^{\mu} \right ) \equiv (E_i, \vec{k}_i)</math> = initial momentum 4-vector of the incident electron
 +
: <math>\left ( p_p^{\mu} \right ) \equiv (M_p, 0)</math> = initial momentum 4-vector of the target proton
 +
: <math>\left ( p_e^{\mu} \right )^{\prime} \equiv (E_f, \vec{k}_f)</math> = final momentum 4-vector of the scattered electron
 +
: <math>\left ( p_p^{\mu} \right )^{\prime} \equiv (E_X, \vec{p}_X)</math> = final momentum 4-vector of the target proton
 +
:<math>W^2 \equiv \left (E_X^2 -p_X^2 \right )</math> = mass of scattered proton
 +
 +
Conservation of 4-Momentum
 +
 +
:<math>\left ( p_e \right )^{\mu} + \left ( p_p \right )^{\mu} = \left ( p_e^{\prime} \right )^{\mu} + \left ( p_p^{\prime} \right )^{\mu}</math>
 +
 +
solve for final proton momentum 4-vector and determine the length
 +
 +
:<math>\left ( p_p^{\prime} \right )_{\mu} \left ( p_p^{\prime} \right )^{\mu} = \left [ \left ( p_e \right )^{\mu} + \left ( p_p \right )^{\mu} - \left ( p_e^{\prime} \right )^{\mu}\right ] \left [ \left ( p_e \right )_{\mu} + \left ( p_p \right )_{\mu} - \left ( p_e^{\prime} \right )_{\mu}\right ]  </math>
 +
 +
 +
 +
:<math>W^2 \equiv \left ( p_p^{\prime} \right )_{\mu} \left ( p_p^{\prime} \right )^{\mu}</math>
 +
: = <math>\left [ (E_i, \vec{k}_i) + (M_p, 0) - (E_f, \vec{k}_f) \right ]\left [ \left ( {E_i \atop \vec{k}_i }\right ) + \left ( {M_p \atop 0 }\right ) - \left ( {E_f \atop \vec{k}_f }\right )\right ]</math>
 +
:<math>= (E_i^2 - k_i^2 ) + (E_f^2 - k_f^2 ) + M_p^2 + 2 M_p(E_i - E_f) - 2(E_iE_f - \vec{k}_i \cdot \vec{k}_f )</math>
 +
:= <math>m_e^2 + m_e^2 +M_p^2 + 2 M_p(E_i - E_f) - 2(E_iE_f - \vec{k}_i \cdot \vec{k}_f )
 +
</math>
 +
 +
: <math>q^2= m_i^2 + m_f^2 - 2 E_i E_f + 2| \vec{k}_i | | \vec{k}_f |^2 \cos(\theta)</math>
 +
 +
 +
substitution
 +
 +
:<math>W^2 = M_p^2 + 2M_p (E_i -E_f) + q^2 = M_p^2 + 2 M_p(E_i - E_f) -Q^2</math>
 +
 +
==Tranform to Center of Mass==
 +
 +
;A relativistic transformation from a rest frame where <math>E,\vec{p}</math> are given to a frame moving with velocity <math>\beta</math> is given by:
 +
 +
:<math>\left ( \begin{matrix} E^{\prime} \\ p^{\prime}_x \\ p^{\prime}_y \\ p^{\prime}_z \end{matrix} \right )= \left [ \begin{matrix} \gamma  & -\gamma \beta & 0 & 0 \\ -\gamma \beta & \gamma &0 &0 \\ 0 &0 &1 &0 \\ 0 &0 &0 &1\end{matrix} \right ] \left ( \begin{matrix} E \\ p_x \\ p_y \\ p_z \end{matrix} \right )</math>
 +
 +
 +
The velocity of the center of mass frame for the case of a fixed target scattering event (the target is at rest) is given by
 +
 +
:<math>\vec v_{cm} c = \vec \beta = \frac{\vec{p_1}}{p^0} = \frac{\vec p_1}{E_1+m_2}</math>
 +
 +
where
 +
 +
:<math>E_1,\vec p_1</math> are the energy and momentum for the incident particle
 +
:<math>m_2</math> is the mass of the target particle
 +
 +
:<math>\beta = \frac{v}{c} = \frac{pc}{E}</math>
 +
: <math>\gamma = \frac{1}{\sqrt{1 -\beta^2}} = \frac{E_{tot}}{mc^2} = \frac{E_1 + m_2}{\sqrt{m_1^2+m_2^2+2 E_1m_2}}</math>
 +
 +
 +
Assume an incident electron of 11 GeV moller scatters
 +
 +
:<math>p_1^{\mu} = ( E_1, \vec p_1) = (sqrt{11^2+0.000511^2, 11 \hat i} )= (11.0000000118691,11 \hat i)</math>
 +
:<math>p_2^{\mu} = ( E_2,\vec 0) = (0.000511,0)</math>
 +
 +
:<math>v_{cm} = \frac{m_1 v_1}{m_1+m_2}</math>
 +
 +
 +
 +
===Using ROOT functions===
 +
 +
TLorentzVector P1,P2;
 +
 +
 +
set the momentum four vector for an 11 GeV electron
 +
 +
P1.SetPxPyPzE(11,0,0,sqrt(11*11+0.000511*0.000511))
 +
P2.SetPxPyPzE(0,0,0,0.000511)
 +
Check that you get the mass of the electron in Units of GeV
 +
 +
 +
The invariant mass of the particle is given by
 +
 +
root [36] P1.Mag()
 +
(const Double_t)5.11000016012715737e-04
 +
 +
The Beta and Gamma of the Particle are Given by
 +
 +
 +
P1.Beta()
 +
(const Double_t)9.99999998920987565e-01
 +
root [42] P1.Gamma()
 +
(const Double_t)2.15264184050203912e+04
 +
 +
 +
The Kinetic Energy (<math>(\gamma-1)m_oc^2</math>) is Given by
 +
 +
root [43] (P1.Gamma()-1)*0.511
 +
(const double)1.09994888049654201e+04
 +
root [46] (P1.Gamma()-1)*P1.Mag()
 +
(const double)1.09994891496458251e+01
 +
 +
 +
assume you moller scatter off a free electron at rest.
 +
 +
Construct the boost vector
 +
 +
 +
TLorentzVector CMS;
 +
 +
CMS=P1+P2;
 +
 +
P1.Boost(-CMS.BoostVector());
 +
P2.Boost(-CMS.BoostVector());
 +
 +
root [138] P1.Px()
 +
(const Double_t)5.30129176950140391e-02
 +
root [139] P2.Px()
 +
(const Double_t)(-5.30129176949399178e-02)
 +
 +
A final state moller scattering event from GEANT4 has
 +
 +
The scattered electron
 +
 +
P3.SetPxPyPzE(0.433025,-0.858867,10999.6,sqrt(0.433025*0.433025+0.858867*0.858867+10999.6*10999.6+ 0.000511*0.000511))
 +
 +
The moller electron
 +
 +
P4.SetPxPyPzE(-0.433025,0.858867,0.905366,sqrt(0.433025*0.433025+0.858867*0.858867+0.905366*0.905366+ 0.000511*0.000511))
 +
 +
 +
<pre>
 +
CMS=P3+P4
 +
 +
 +
P3.Boost(-CMS.BoostVector());
 +
root [191] P4.Boost(-CMS.BoostVector());
 +
root [192] P3.Px()
 +
(const Double_t)4.33024999999999993e-01
 +
root [193] P4.Px()
 +
(const Double_t)(-4.33024999999999993e-01)
 +
root [194] P3.Py()
 +
(const Double_t)(-8.58867000000000047e-01)
 +
root [195] P4.Py()
 +
(const Double_t)8.58867000000000047e-01
 +
root [196] P3.Pz()
 +
(const Double_t)4.78021531980484724e+01
 +
root [197] P4.Pz()
 +
(const Double_t)(-4.78021531981362244e+01)
 +
root [198] P3.E()
 +
(const Double_t)4.78118292245973180e+01
 +
root [199] P4.E()
 +
(const Double_t)4.78118292247171723e+01
 +
 +
</pre>
 +
 +
 +
[http://iac.isu.edu/mediawiki/index.php/Classes Back to Classes]

Latest revision as of 17:39, 28 April 2015

Lorentz Transformations

The picture below represents the relative orientation of two different coordinate systems [math](S, S^{\prime})[/math] . [math]S[/math] is at rest (Lab Frame) and [math]S^{\prime}[/math] is moving at a velocity v to the right with respect to frame [math]S[/math].

ForestRelativityLorentzFrame.jpg

The relationship between the coordinate[math] (x,y,z,ct)[/math] of an object in frame [math]S[/math] to the same object described using the coordinates [math](x^{\prime},y^{\prime},z^{\prime},ct^{\prime})[/math] in frame [math]S^{\prime}[/math] is geven by the Lorentz transformation:

Notation

The relativistic transformation used to transform the coordinates of an object observed in the rest frame [math]S[/math] to a moving reference frame[math] S^{\prime}[/math] is given by:

[math]x^{\mu^{\prime}} = \sum_{\nu=0}^3 \Lambda_{\nu}^{\mu} x^{\nu}[/math]

where

[math] x^0 \equiv ct[/math]
[math]x^1 \equiv x[/math]
[math]x^2\equiv y[/math]
[math]x^3\equiv z[/math]
[math]\Lambda = \left [ \begin{matrix} \gamma & -\gamma \beta & 0 & 0 \\ -\gamma \beta & \gamma &0 &0 \\ 0 &0 &1 &0 \\ 0 &0 &0 &1\end{matrix} \right ][/math]
[math]\beta = \frac{v}{c} = \frac{pc}{E}[/math]
[math]\gamma = \frac{1}{\sqrt{1 -\beta^2}} = \frac{E_{tot}}{mc^2}[/math]
NOTE
It is common in particle physics to define [math] c \equiv 1[/math] making [math]\gamma = \frac{E}{m}[/math] where [math]m[/math] is in units of [math]\frac{\mbox{MeV}}{\mbox{c}^2}[/math]
example
[math]x^{0^{\prime}} = \sum_{\nu=0}^2 \Lambda_{\nu}^0 x^{\nu} = \Lambda_0^0 x^0 + \Lambda_1^0 x^1 \Lambda_2^0 x^2 + \Lambda_3^0 x^2[/math]
[math]ct^{\prime}= \gamma x^0 - \gamma \beta x^1 + 0 x^2 + 0 x^3 = \gamma ct - \gamma \beta x = \gamma(ct -\beta x)[/math]
Or in matrix form the tranformation looks like
[math]\left ( \begin{matrix} ct^{\prime} \\ x^{\prime} \\ y^{\prime} \\ z^{\prime} \end{matrix} \right )= \left [ \begin{matrix} \gamma & -\gamma \beta & 0 & 0 \\ -\gamma \beta & \gamma &0 &0 \\ 0 &0 &1 &0 \\ 0 &0 &0 &1\end{matrix} \right ] \left ( \begin{matrix} ct \\ x \\ y \\ z \end{matrix} \right )[/math]
Note
Einstein's summation convention drops the [math]\sum[/math] symbols and assumes it to exist whenever there is a repeated subscript and uperscript
ie; [math]x^{\mu^{\prime}} = \Lambda_{\nu}^{\mu} x^{\nu}[/math]
in the example above the[math] \nu[/math] symbol is repeated thereby indicating a summation over [math]\nu[/math].

Momentum 4-vector

The momentum 4 -vector is denoted as:

[math]p^{\mu} \equiv (\frac{E}{c} , \vec{p})[/math]
[math]p_{\mu} \equiv (\frac{E}{c} , -\vec{p})[/math]
[math]p_{\mu}p^{\mu} = \frac{E^2}{c^2} - p^2 \equiv E^2 - p^2 = m^2[/math]
Note
There is another convention used for 4-vector notation by Perkins and Koller which goes like this
[math]p^{\mu} \equiv (\vec{p},iE)[/math]
[math]p_{\mu} \equiv (\vec{p},iE)[/math]

Trig Method

Another way to represent the Lorentz transformation is by using the substitution

[math]\sin (\alpha) \equiv \beta \equiv \frac{v}{c}[/math]
[math]\cos(\alpha) \equiv \frac{1}{\gamma} \equiv \sqrt{1 - \beta^2}[/math]
The Matrix form of the tranformation looks like
[math]\left ( \begin{matrix} ct^{\prime} \\ x^{\prime} \\ y^{\prime} \\ z^{\prime} \end{matrix} \right )= \left [ \begin{matrix} \sec(\alpha) & -\tan(\alpha) & 0 & 0 \\ -\tan(\alpha) & \sec(\alpha) &0 &0 \\ 0 &0 &1 &0 \\ 0 &0 &0 &1\end{matrix} \right ] \left ( \begin{matrix} ct \\ x \\ y \\ z \end{matrix} \right )[/math]
Or the reverse transformation
[math]\left ( \begin{matrix} ct \\ x \\ y \\ z \end{matrix}\right )= \left [ \begin{matrix} \sec(\alpha) & \tan(\alpha) & 0 & 0 \\ \tan(\alpha) & \sec(\alpha) &0 &0 \\ 0 &0 &1 &0 \\ 0 &0 &0 &1\end{matrix} \right ] \left ( \begin{matrix} ct^{\prime} \\ x^{\prime} \\ y^{\prime} \\ z^{\prime} \end{matrix} \right )[/math]
Notice that you just needed to change the signs for the inverse matrix [math]\Lambda^{-1}[/math]

Proper Time and Length

Proper Time

Proper Time [math]\Tau[/math]
The time measured in the rest frame of the clock. The time interval is measured at the same x,y,z coordinates because the clock chose is in a frame which is not moving (rest frame).

The time given in any frame (t) = [math]\gamma \Tau[/math]

Note
since [math]\gamma \gt 1[/math] you expect the Proper time interval to be the smallest

Proper Length

Proper Length[math] (c\Tau)[/math]
The length of an object in the object's rest frame.

Invariant Length

Transformation Examples

Decay of a Particle at Rest to 2 Bodies

Consider the decay of the [math]\rho_0[/math] meson of mass [math]M[/math] at rest into two pions ([math]\pi^+[/math] and [math]\pi^-[/math] ) of mass [math]m_1[/math] and [math]m_2[/math] respectively.


File:NeutralRhoMesonDecayDiagram.jpg

The diagram above shows a [math]\rho_0[/math] meson at rest in the lab which then decays into two pions of momentum [math]p_1[/math] and [math]p_2[/math] in the center of momentum frame of the [math]\rho_0[/math] meson.

Our goal is to determine the momentum and energy of each pion ([math]E_1[/math] & [math]E_2[/math]) resulting from the decay of the Mother particle.

Conservation of 4-Momentum implies that if [math]P^{\mu}[/math] represents the total momentum of the system before the decay then

[math]P^{\mu} = (E,0) =(M,0) = \left ( p_1 \right )^{\mu} + \left ( p_2 \right)^{\mu}[/math]
[math]\Rightarrow 0 = \vec{p}_1 + \vec{p}_2[/math]

or

[math]\vec{p}_1 = - \vec{p}_2[/math]

Let

[math]p \equiv |\vec{p}_1 | = |\vec{p}_2 |[/math]

Conservation of Energy

[math]\Rightarrow E_{tot} = M = E_1 + E_2 = \sqrt{m_1^2 + p^2} + \sqrt{m_2^2 + p^2}[/math]

solving for p

[math]\Rightarrow p = \frac{1}{2M} \sqrt{[M^2 - (m_1-m_2)^2][M^2-(m_1+m_2)^2]}[/math]
[math]\Rightarrow M \ge m_1 + m_2[/math] is required to avoid the unphysical condition that the momentum of the particles after a decay would be an imaginary number

Using

[math]p \equiv |\vec{p}_1 | = |\vec{p}_2 |[/math]
[math]E_1^2 - m_1^2 = E_2^2 - m_2^2[/math]
[math]\Rightarrow E_2 = \sqrt{E_1^2 - m_1^2 + m_2^2}[/math]

Combine this with the conservation of energy equation above:

[math] E_1 + E_2 = E_1 + \sqrt{E_1^2 - m_1^2 + m_2^2} = M[/math]
[math]\Rightarrow E_1 - M = \sqrt{E_1^2 - m_1^2 + m_2^2}[/math]

Square both sides of the above equation

[math]E_1^2 -2ME_1 + M^2 = E_1^2- m_1^2 + m_2^2[/math]
[math]\Rightarrow E_1 = \frac{M^2+m_1^2-m_2^2}{2M}[/math]

Similarly

[math] E_2 = \frac{M^2+m_2^2-m^2_1}{2M}[/math]


Note
[math]\vec{p}_1 = -\vec{p}_2[/math]
[math]\Rightarrow[/math] The daughter particles (pions) from the decay of the Mother particle [math](\rho)[/math] travel in opposite directions with respect to eachother ( ie; they are "back - to -back")
This means that there is no preferential direction for the decay (the particles are distributed isotropically such that they are back-to-back)

Decay of Moving Particle to 2 Bodies (decay in flight)

[math]P^{\mu} = (E,\vec{p}_{tot}) =(M,\vec{p}_{tot}) = \left ( p_1 \right )^{\mu} + \left ( p_2 \right)^{\mu}[/math]

Assuming that the Mother particle is moving along the Z-axis, then the momentum of the daughter particles perpendicular to the Z-axis (transverse components:[math]\vec{p}_{1,\perp}[/math] and [math]\vec{p}_{2,\perp}[/math]) are equal and opposite by conservation of momentum.

[math]\vec{p}_{1,\perp}\equiv -\vec{p}_{2,\perp}[/math]

The center of momentum frame is moving such that

[math]\beta_{CM} = \frac{p_{tot}}{M}[/math]
[math]\gamma_{CM} = \frac{E_{tot}}{M}[/math]

A Lorentz transformation of the kinematics for particle 1 between the Center of Momentum (cm) frame and the lab is given by:

[math]E_1 = \gamma_{cm}(E_1^{CM} + \beta_{cm}p_{1,z}^{CM})[/math]
[math]p_{1,z} = \gamma_{CM}(p_{1,z}^{CM} + \beta_{cm} E_1^{CM})[/math]
[math]p_{1,\perp} = p_{\perp}^{CM}[/math]

where

[math]E_1^{CM}[/math] = Kinetic Energy (not total) of particle 1 in the center of momentum (CM) reference frame
[math]p_{1,z}^{CM}[/math] = momentum of particle 1 along the direction of the mother particle in the CM frame
[math]p_{1,\perp}[/math] = the component of particle 1's momentum perpendicular to Mother particle's momentum
You can now use the results for [math]E_1[/math] and [math]p_1=p[/math] from the previous section where the Mother particle is at rest to determine the kinematics of the particles in the lab frame given that you know the initial 4-Momentum of the mother particle. You will need to specify the daugher decay angles in the CM frame in order to find the momentum components [math]p_z[/math] and [math]p_{\perp}[/math].
It can be shown that the lab angle for daughter particle 1 ([math]\theta_1[/math]) is given by
[math]\tan(\theta_1) = \frac{\sin(\theta_1^{CM})}{\gamma_{CM}\left (\frac{\beta_{CM}}{\beta_1^{CM}} + \cos(\theta_1^{CM}) \right )}[/math]

where

[math]\beta_1^{CM} = \frac{p_1}{E} = \beta[/math] for daughter particle 1 in CM frame.

One could also find [math]\vec{p}_1[/math] without using the Lorentz transformation. Just use conservation of Energy and Momentum:

[math]E_{tot} = E_1^{tot} + E_2^{tot} = \sqrt{m_1^2 + p_1^2} + \sqrt{m_2^2 + p_2^2}[/math]
[math]\vec{p_{tot}} = \vec{p}_1 + \vec{p}_2[/math]

Solve the conservation of momentum equation for [math]p_2^2[/math]

[math]p_2^2 = (\vec{p_{tot}}- \vec{p}_1)^2 [/math]

and substitute the above for [math]p_2^2[/math] in the Conservation of Energy equation above. The dot product gives you the angle between the daughter momentum and the Mother momentum ([math]\theta_1[/math]) as a variable. After a lot of algebra you can show that

[math]p_1 = \frac{\left ( M^2 + m_1^2 -m_2^2 \right ) p_{tot} \cos(\theta_1) \pm 2E\sqrt{M^2p^2 - m_1^2p^2_{tot} \sin^2(\theta_1)}}{2 \left( M^2 + p^2 \sin^2(\theta_1)\right )}[/math]
Note
[math]p[/math] is the momentum of the two daughter particles in the CM frame which was derived when the Mother particle was at rest. [math]p_{tot}[/math] is the momentum of the Mother particle.


In order for a real solution

[math]M^2p^2 - m_1^2p^2_{tot} \sin^2(\theta_1) \ge 0[/math]
[math]\Rightarrow \frac{M p}{m_1 p_{tot}} \ge \sin(\theta_1)[/math]


If [math]\frac{M p}{m_1 p_{tot}} \gt 1[/math] then [math]\theta_1[/math] can be any angle and the "-" sign possibility in "[math]\pm[/math]" is rejected to avoided negative values for [math]p_1[/math] when [math]\theta_1[/math] > [math]\frac{\pi}{2}[/math].


If [math]\frac{M p}{m_1 p_{tot}} \lt 1[/math] then the maximum emmission angle for daughter 1 is given by

[math]\sin(\theta_1^{max}) = \frac{M p}{m_1 p_{tot}}[/math]

The "[math]\pm[/math]" is kept because for each [math]\theta_1 \lt \theta_1^{max}[/math] there are two possible trajectories for daughter particle 1 and as a result 2 trajectories for daughter particle 2.

Decay of Particle to 3 Bodies (Dalitz plot)

Now lets consider the case where a Mother particle of mass [math]M[/math] decays into 3 daughter particles of masses [math]m_1[/math], [math]m_2[/math], and [math]m_3[/math]. The 4-mometum conservation is written as

[math]P^{\mu} = \left ( p_1 \right )^{\mu} +\left ( p_2 \right )^{\mu} +\left ( p_3 \right )^{\mu}[/math]

The following invariants are defined

[math]s = P_{\mu}P^{\mu} = M^2[/math]
[math]s_1 = \left (P -p_1 \right)_{\mu}\left (P -p_1 \right)^{\mu}=\left (p_2 + p_3 \right)_{\mu}\left (p_2 + p_3 \right)^{\mu}[/math]
[math]s_2 = \left (P -p_2 \right)_{\mu}\left (P -p_2 \right)^{\mu}=\left (p_3 + p_1 \right)_{\mu}\left (p_3 + p_1 \right)^{\mu}[/math]
[math]s_3 = \left (P -p_3 \right)_{\mu}\left (P -p_3 \right)^{\mu}=\left (p_1 + p_2 \right)_{\mu}\left (p_1 + p_2 \right)^{\mu}[/math]

The invariants [math]s_1[/math], [math]s_2[/math] and [math]s_3[/math] are not independent (the motivation for what is known as a Dalitz plot). Based on the definitions of these invariants and 4-momentum conversation one can show that

[math]s_1 + s_2 + s_3 = (P^2 -2Pp_1 +p_1^2) +(P^2 -2Pp_2 +p_2^2) + (P^2 -2Pp_3 +p_3^2)[/math]
[math]=3P^2 -2P(p_1+p_2+p_3) +p_1^2+p_2^2+p_3^2[/math]
[math]=3P^2 -2P^2 +p_1^2+p_2^2+p_3^2[/math]
[math]=P^2 +p_1^2+p_2^2+p_3^2[/math]
[math]=M^2 + m_1^2 + m_2^2 +m_3^2[/math]


Also Note
[math]\sqrt{s_1}[/math] is the invariant mass of a subsystem defined by treating daughter particles 2 and 3 as one object. similar interpretations for [math]\sqrt{s_2}[/math] and [math]\sqrt{s_3}[/math].


There are limits to the values of the invariant masses [math]s_1[/math] - [math]s_3[/math]

In the Center of Momentum system we have the

[math]s_1 = M^2 +m_1^2 - 2ME_1[/math]

because

[math]E_1 = m_1^2 + p_1^2[/math] we expect [math]E_1 \ge m_1[/math]

This lead to

[math]\left . s_1 \right |_{max} = M^2 +m_1^2 - 2M(m_1) = (M-m_1)^2[/math]


TO find the minimum value of [math]s_1[/math] we evaluate [math]s_1[/math] in the rest frame of the [math]m_2[/math], [math]m_3[/math] subsystem.

[math]s_1 = \left (p_2 + p_3 \right)_{\mu}\left (p_2 + p_3 \right)^{\mu}= (E_2^{cm2-3} +E_3^{cm2-3})^2 \gt (m_2 + m_3)^2[/math] : In the CM frame [math]E = \sqrt{p^2 +m^2} = m[/math]

so the limits of s_1 are

[math](m_2 + m_3)^2 \le s_1 \le (M-m_1)^2[/math]

Invariant mass Dalitz plot Limits

Analagously you can show the the Min - Max limits for the [math]s_1[/math], [math]s_2[/math], and [math]s_3[/math] invariant masses are given by.

[math](m_3 + m_1)^2 \le s_2 \le (M-m_2)^2[/math]
[math](m_1 + m_2)^2 \le s_3 \le (M-m_3)^2[/math]

set theory notation is often used to express the above limits as

[math]s_1 \in \left [ (m_2 + m_3)^2 , (M-m_1)^2 \right ][/math]
[math]s_2 \in \left [ (m_3 + m_1)^2 , (M-m_2)^2 \right ][/math]
[math]s_2 \in \left [ (m_1 + m_2)^2, (M-m_3)^2 \right ][/math]

Dalitz plot boundary curve equation

Suppose we wish to plot a curve which describes the depence of s_1 on s_2 (determine s_2 as a function of s_1). This is refered to as a Dalitz plot in which [math]s_2[/math] appears on the x-axis (abscissa) and [math]s_1[/math] appears on the y-axis (ordinate). Becuase of the "squares" in the invariant mass, we can have two values of [math]s_2[/math] for a given value of [math]s_1[/math].

since

[math]s_2 = \left (p_3 + p_1 \right)_{\mu}\left (p_3 + p_1 \right)^{\mu}[/math]

We should look seek equations for [math]p_1[/math] and [math]p_3[/math] in terms of masses[math](M,m_1,m_2,m_3)[/math] and invariants [math](s,s_1)[/math].

In order to find such expressions lets consider the problem as viewed by a reference frame in which [math]\vec{p}_3[/math] = -[math]\vec{p}_2[/math]. This reference frame is sometimes referred to as the Jackson Frame (JF).

In the JF frame

[math]\vec{P}^{JF} = \vec{p}_1^{JF}[/math] : because the other two particles cancel the total momentum of the system is carried by [math]m_1[/math].
[math]s_1 \equiv = \left (P -p_1 \right)_{\mu}\left (P -p_1 \right)^{\mu}[/math]
[math]=\left [ (E,-\vec{P}) - (E_1,-\vec{p_1})\right ]\left [ (E,\vec{P}) - (E_1,\vec{p}_1)\right ][/math]
[math]=\left [ (E^{JF},-\vec{P}^{JF}) - (E_1^{JF},-\vec{p}_1^{JF})\right ]\left [ (E^{JF},\vec{P}^{JF}) - (E_1^{JF},\vec{p}_1^{JF})\right ][/math]
[math]= (E^{JF}-E_1^{JF})^2 : \vec{P}^{JF}=\vec{p}_1^{JF}[/math]
=[math]\left( \sqrt{M^2+(P^{JF})^2} - \sqrt{m^2+(p_1^{JF})^2}\right)[/math] : Def of [math]E_{tot}[/math]
=[math]\left( \sqrt{M^2+(p_1^{JF})^2} - \sqrt{m^2+(p_1^{JF})^2}\right)[/math]

where

[math]E^{JF}[/math] = total energy of Mother particle before it decays
[math]E_1^{JF}[/math] = total energy of [math]m_1[/math] particle

solving for [math]p_1^{JF}[/math]

[math]\left( p_1^{JF}\right )^2 = \frac{1}{4s_1} \left [ s_1 -(M-m_1)^2\right ]\left [ s_1 -(M+m_1)^2\right ][/math]


The function [math]\lambda[/math] is defined such that

[math]\lambda(A,B^2,C^2) = \left [ A -(B-C)^2\right ]\left [ A -(B+C)^2\right ][/math] : notice the "squared" arguments
[math]=A^2 + B^2 + C^2 -2AB -2BC -2CA [/math]

since this solution above is so common in relativistic kinematics

[math]\Rightarrow \left( p_1^{JF}\right )^2 = \frac{1}{4s_1}\lambda(s_1,M^2,m_1^2) [/math]

Doing an analogous calculation for the other form os s_1

[math]s_1 =\left (p_2 + p_3 \right)_{\mu}\left (p_2 + p_3 \right)^{\mu}[/math]

we will find

[math]p_2^{JF} = p_3^{JF} = \frac{1}{4s_1}\lambda(s_1,m^2,m_3^2)[/math]

Lets substitute [math]p_1[/math] and [math]p_3[/math] into the definition for [math]s_2[/math] in the Jackson Frame.

[math]s_2 = \left (p_3 + p_1 \right)_{\mu}\left (p_3 + p_1 \right)^{\mu}[/math]
[math]=\left (p_3^{JF} + p_1^{JF} \right)_{\mu}\left (p_3^{JF} + p_1^{JF} \right)^{\mu}[/math]
[math]=\left [ (E_1^{JF},-\vec{p}_1^{JF}) + (E_3^{JF},-\vec{p}_3^{JF})\right]\left [ (E_1^{JF},\vec{p}_1^{JF}) + (E_3^{JF},\vec{p}_3^{JF})\right][/math]
[math]= m_1^2 +m_3^2 + 2\left ( E_1^{JF} E_3^{JF} - p_1^{JF} p_2^{JF} \cos(\theta_{13})\right )[/math]

where

[math]\cos(\theta_{13})[/math] = angle between [math]\vec{p}_1^{JF}[/math] and [math]\vec{p}_3^{JF}[/math]

[math]p_1^{JF}[/math] and [math]p_2^{JF}[/math] are given above we just need to figure out what [math]E_1^{JF}[/math] and [math]E_2^{JF}[/math] are


If we assume [math]s_1[/math] is fixed (you generate the Dalitz plot boundary by determining the two values of [math]s_2[/math] for a given value of [math]s_1[/math]) then

[math]E_1^{JF} = \frac{1}{2\sqrt{s_1}} (M^2 - s_1 -m_1^2)[/math]
[math]E_3^{JF} = \frac{1}{2\sqrt{s_1}} (s_1 + m_3^2 -m_2^2) [/math]

The only remaining unkown is the angle [math](\alpha)[/math] between math>\vec{p}_1^{JF}</math> and [math]\vec{p}_3^{JF}[/math] which we can treat as either [math]\pi[/math] or 0 to determine the min and max values of s_2 for a given value of 2_1.

[math]s_2= m_1^2 +m_3^2 + 2\left ( E_1^{JF} E_3^{JF} - p_1^{JF} p_2^{JF} \cos(\theta_{13})\right )[/math]
[math]= m_1^2 +m_3^2 + 2\left ( E_1^{JF} E_3^{JF} \pm p_1^{JF} p_2^{JF} \right )[/math]
[math]= m_1^2 +m_3^2 + 2\left ( \frac{1}{2\sqrt{s_1}} (M^2 - s_1 -m_1^2) \frac{1}{2\sqrt{s_1}} (s_1 + m_3^2 -m_2^2) \pm p_1^{JF} p_2^{JF} \right )[/math]

Substituting for [math]p_1^{JF}[/math] and [math]p_2^{JF}[/math]

[math]s_2=m_1^2 +m_3^2 + \frac{1}{s_1} \left ((M^2 - s_1 -m_1^2)(s_1 + m_3^2 -m_2^2) \pm \sqrt{\lambda(s_1,M^2,m_1^2) \lambda(s_1,m_2^2,m_3^2)}\right )[/math]

The above equation for [math]s_2[/math] defines a boundary line of the Dalitz plot. The kinematics of the particles in constrained to the interior of this bounding.

Example:[math] D_s^+[/math] Meson decay

Consider the [math]D_s^+[/math] meson which decays [math]\sim[/math] 5\% of the time into three particles; [math]K^+K^-\pi^+[/math]

[math]M =1969 MeV[/math] for a[math] D_s^+[/math] Meson
[math]m_1 = 494 MeV[/math] for a [math] K^+[/math]
[math] m_2 = 140 MeV[/math] is a [math]\pi^+[/math]
[math] m_3=494 MeV[/math] is a [math]K^-[/math]


Dalitz Plot limits are:

X-axis[math] (s_2)[/math]
Min = [math](m_3 + m_1)^2 = (988 MeV)^2 \; \sim 1 GeV^2[/math]
Max = [math](M-m_2)^2 = (1829 MeV)^2 = 3.35 GeV^2[/math]
Y-axis [math](s_1)[/math]
Min [math](m_2+m_3)^2 \; \sim (634 MeV)^2 = 0.402 GeV^2[/math]
Max= [math](M-m_1)^2 = (1475 MeV)^2 = 2.2 GeV^2[/math]

The image below is from experiment E698

DalitzPlot Dsplus-to-KKPi.jpg

Notice the dark bands which have been labeled [math]\phi(1020)[/math] and [math]\bar{K}^{*0}(892)[/math]. These dark bands indicate a tendency for the decay to clump into states with specific masses, namely [math]s_2=1.04 GeV^2 (\Rightarrow m=1020 MeV)[/math] and [math]s_1=0.796 GeV^2 (\Rightarrow m= 892 MeV^2)[/math]. The isobar model suggests that the [math]D_s^+[/math] decays into two particles and then a third particle. In one case the decay is

[math]D_s^+ \rightarrow \phi^0 + \pi^+[/math]

and then the [math]\phi[/math] decays via

[math]\phi^0 \rightarrow K^+ + K^-[/math]

Notice that the dark bands are not infinitely thin but have widths as well. The uncertainty principle ([math]\Delta E \Delta t \gt \hbar[/math]) suggest that only a particle with an infinite lifetime can have a finite , well defined, mass. The width of these dark bands can be used to determine the lifetimes of the intermediate [math]\phi[/math] and [math]\bar{K}^{*0}[/math] states.

Also notice that there are 2 "clumps" of darks spots in each dark band. The limits for [math]s_2[/math] where based on Min/Max values of the [math]\cos(\theta_{13})[/math] term. This term tells us how aligned or misaligned the momentum vecors of [math]m_1[/math] and [math]m_3[/math] (the Kaons)are.

Elastic Scattering

File:ForestRelativity ElasticScateringDiagram.jpg


Given the elastic scattering of 2 particles such that the following properties are

Known
[math]m_1[/math] = mass of the incident particle #1
[math]m_2[/math] = mass of the target particle (at rest) #2
[math]p_1[/math] = momentum of the incident particle #1
[math]\theta_1[/math] = scattering angle of particle #1

You can show that

[math]p_1^{\prime} = \frac{-B \pm \sqrt{B^2 -4AC}}{2A}[/math] = Final momentum of scattered particle #1
[math]p_2^{\prime} = \left ( p_1^{\prime} \right )^2 -2p_1p_1^{\prime}\cos(\theta_1) + p_1^2[/math] = Final momentum of the target particle
[math]\sin (\theta_2) = - \frac{p_1^{\prime} \sin(\theta_1)}{p_2^{\prime}}[/math]

where

[math]A = \left ( \sqrt{p_1^2 +m_1^2} +m_2 \right )^2 -p_1^2 \cos^2(\theta_1)[/math]
[math]B = -2p_1 \cos(\theta_1) \left ( m_1^2 + m_2 \sqrt{p_1^2 + m_1^2}\right )[/math]
[math]C = - \left [ m_1^4 + (m_2^2 -m_1^2)(p_1^2 + m_1^2) -m_1^2m_2^2\right ][/math]

In-Elastic Scattering

File:ForestRelativity InelasticScatDiagram.jpg

List of 4-vectors
[math]q^{\mu} \equiv ( \omega , \vec{q} )[/math] = momentum transfered from incident particle to target
[math]k_i^{\mu} \equiv (E_i, \vec{k}_i )[/math] = initial momentum of incident particle
[math]k_f^{\mu} \equiv (E_f, \vec{k}_f )[/math] = final momentum of incident particle


[math]q^{\mu} \equiv k_i^{\mu} - k_f^{\mu}[/math] = definition of momentum transfer based on conservation of momentum

Momentum Transfer Squared [math](Q^2)[/math]

The momentum transfer squared is given by

[math]q_{\mu}q^{\mu} = (E_i - E_f)^2 -(\vec{k}_i - \vec{k}_f ) (\vec{k}_i - \vec{k}_f )[/math]
[math]=(E_i^2 -2E_iE_f +F_f^2) - ( |\vec{k}_i |^2 - 2 |\vec{k}_i| |\vec{k}_f| \cos(\theta) + | k_f |^2)[/math]
[math]E^2 = | \vec{k} |^2 +m^2 [/math]
[math]\Rightarrow q_{\mu}q^{\mu} = \left ( | \vec{k}_i |^2 +m_i^2 - 2 E_i E_f +| \vec{k}_f |^2 +m_f^2\right ) - | \vec{k}_i |^2 - | \vec{k}_f |^2 + 2 | \vec{k}_i | | \vec{k}_f |^2 \cos(\theta)[/math]
[math]= m_i^2 + m_f^2 - 2 E_i E_f + 2| \vec{k}_i | | \vec{k}_f |^2 \cos(\theta) [/math]


In the case of electron scattering

[math]m_i = m_f[/math]
[math]E_i \sim | \vec{k}_i |[/math]
[math]E_f \sim | \vec{k}_f |[/math]
[math]m \ll E[/math]
[math]\Rightarrow q^2 = -2 | \vec{k}_i | | \vec{k}_f | \left ( 1 - \cos (\theta) \right )[/math]
[math]= -4 | \vec{k}_i | | \vec{k}_f | \sin^2(\frac{\theta}{2}) \equiv -4 E_i E_f \sin^2(\frac{\theta}{2})[/math]

if[math] q^2 \lt 0 \Rightarrow[/math] spacelike (scattering)

if [math]q^2 \gt 0 \Rightarrow[/math] timelike (free particle)

The Momentum Transfer squared for scattering is define as [math]Q^2[/math] such that

[math]Q^2 = -q^2[/math]

Missing Mass [math](W)[/math]

Consider an inelastic scattering process where the particles have the 4-Momentum vectors defined as

[math]\left ( p_e^{\mu} \right ) \equiv (E_i, \vec{k}_i)[/math] = initial momentum 4-vector of the incident electron
[math]\left ( p_p^{\mu} \right ) \equiv (M_p, 0)[/math] = initial momentum 4-vector of the target proton
[math]\left ( p_e^{\mu} \right )^{\prime} \equiv (E_f, \vec{k}_f)[/math] = final momentum 4-vector of the scattered electron
[math]\left ( p_p^{\mu} \right )^{\prime} \equiv (E_X, \vec{p}_X)[/math] = final momentum 4-vector of the target proton
[math]W^2 \equiv \left (E_X^2 -p_X^2 \right )[/math] = mass of scattered proton

Conservation of 4-Momentum

[math]\left ( p_e \right )^{\mu} + \left ( p_p \right )^{\mu} = \left ( p_e^{\prime} \right )^{\mu} + \left ( p_p^{\prime} \right )^{\mu}[/math]

solve for final proton momentum 4-vector and determine the length

[math]\left ( p_p^{\prime} \right )_{\mu} \left ( p_p^{\prime} \right )^{\mu} = \left [ \left ( p_e \right )^{\mu} + \left ( p_p \right )^{\mu} - \left ( p_e^{\prime} \right )^{\mu}\right ] \left [ \left ( p_e \right )_{\mu} + \left ( p_p \right )_{\mu} - \left ( p_e^{\prime} \right )_{\mu}\right ] [/math]


[math]W^2 \equiv \left ( p_p^{\prime} \right )_{\mu} \left ( p_p^{\prime} \right )^{\mu}[/math]
= [math]\left [ (E_i, \vec{k}_i) + (M_p, 0) - (E_f, \vec{k}_f) \right ]\left [ \left ( {E_i \atop \vec{k}_i }\right ) + \left ( {M_p \atop 0 }\right ) - \left ( {E_f \atop \vec{k}_f }\right )\right ][/math]
[math]= (E_i^2 - k_i^2 ) + (E_f^2 - k_f^2 ) + M_p^2 + 2 M_p(E_i - E_f) - 2(E_iE_f - \vec{k}_i \cdot \vec{k}_f )[/math]
= [math]m_e^2 + m_e^2 +M_p^2 + 2 M_p(E_i - E_f) - 2(E_iE_f - \vec{k}_i \cdot \vec{k}_f ) [/math]
[math]q^2= m_i^2 + m_f^2 - 2 E_i E_f + 2| \vec{k}_i | | \vec{k}_f |^2 \cos(\theta)[/math]


substitution

[math]W^2 = M_p^2 + 2M_p (E_i -E_f) + q^2 = M_p^2 + 2 M_p(E_i - E_f) -Q^2[/math]

Tranform to Center of Mass

A relativistic transformation from a rest frame where [math]E,\vec{p}[/math] are given to a frame moving with velocity [math]\beta[/math] is given by
[math]\left ( \begin{matrix} E^{\prime} \\ p^{\prime}_x \\ p^{\prime}_y \\ p^{\prime}_z \end{matrix} \right )= \left [ \begin{matrix} \gamma & -\gamma \beta & 0 & 0 \\ -\gamma \beta & \gamma &0 &0 \\ 0 &0 &1 &0 \\ 0 &0 &0 &1\end{matrix} \right ] \left ( \begin{matrix} E \\ p_x \\ p_y \\ p_z \end{matrix} \right )[/math]


The velocity of the center of mass frame for the case of a fixed target scattering event (the target is at rest) is given by

[math]\vec v_{cm} c = \vec \beta = \frac{\vec{p_1}}{p^0} = \frac{\vec p_1}{E_1+m_2}[/math]

where

[math]E_1,\vec p_1[/math] are the energy and momentum for the incident particle
[math]m_2[/math] is the mass of the target particle
[math]\beta = \frac{v}{c} = \frac{pc}{E}[/math]
[math]\gamma = \frac{1}{\sqrt{1 -\beta^2}} = \frac{E_{tot}}{mc^2} = \frac{E_1 + m_2}{\sqrt{m_1^2+m_2^2+2 E_1m_2}}[/math]


Assume an incident electron of 11 GeV moller scatters

[math]p_1^{\mu} = ( E_1, \vec p_1) = (sqrt{11^2+0.000511^2, 11 \hat i} )= (11.0000000118691,11 \hat i)[/math]
[math]p_2^{\mu} = ( E_2,\vec 0) = (0.000511,0)[/math]
[math]v_{cm} = \frac{m_1 v_1}{m_1+m_2}[/math]


Using ROOT functions

TLorentzVector P1,P2;


set the momentum four vector for an 11 GeV electron

P1.SetPxPyPzE(11,0,0,sqrt(11*11+0.000511*0.000511))
P2.SetPxPyPzE(0,0,0,0.000511)

Check that you get the mass of the electron in Units of GeV


The invariant mass of the particle is given by

root [36] P1.Mag()
(const Double_t)5.11000016012715737e-04

The Beta and Gamma of the Particle are Given by


P1.Beta()
(const Double_t)9.99999998920987565e-01
root [42] P1.Gamma()
(const Double_t)2.15264184050203912e+04


The Kinetic Energy ([math](\gamma-1)m_oc^2[/math]) is Given by

root [43] (P1.Gamma()-1)*0.511
(const double)1.09994888049654201e+04
root [46] (P1.Gamma()-1)*P1.Mag()
(const double)1.09994891496458251e+01


assume you moller scatter off a free electron at rest.

Construct the boost vector


TLorentzVector CMS;
CMS=P1+P2;
P1.Boost(-CMS.BoostVector());
P2.Boost(-CMS.BoostVector());
root [138] P1.Px()
(const Double_t)5.30129176950140391e-02
root [139] P2.Px()
(const Double_t)(-5.30129176949399178e-02)

A final state moller scattering event from GEANT4 has

The scattered electron

P3.SetPxPyPzE(0.433025,-0.858867,10999.6,sqrt(0.433025*0.433025+0.858867*0.858867+10999.6*10999.6+ 0.000511*0.000511))

The moller electron

P4.SetPxPyPzE(-0.433025,0.858867,0.905366,sqrt(0.433025*0.433025+0.858867*0.858867+0.905366*0.905366+ 0.000511*0.000511))


CMS=P3+P4


P3.Boost(-CMS.BoostVector());
root [191] P4.Boost(-CMS.BoostVector());
root [192] P3.Px()
(const Double_t)4.33024999999999993e-01
root [193] P4.Px()
(const Double_t)(-4.33024999999999993e-01)
root [194] P3.Py()
(const Double_t)(-8.58867000000000047e-01)
root [195] P4.Py()
(const Double_t)8.58867000000000047e-01
root [196] P3.Pz()
(const Double_t)4.78021531980484724e+01
root [197] P4.Pz()
(const Double_t)(-4.78021531981362244e+01)
root [198] P3.E()
(const Double_t)4.78118292245973180e+01
root [199] P4.E()
(const Double_t)4.78118292247171723e+01


Back to Classes