Difference between revisions of "Differential Cross-Section"
Jump to navigation
Jump to search
(2 intermediate revisions by the same user not shown) | |||
Line 120: | Line 120: | ||
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{ | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}p^{*4}\sin^4{\theta}}\left( p^{*4}\cos^4{\theta}+2p^{*4}\cos^2{\theta}+p^{*4}+4E^{*2}p^{*2}+4E^{*2}p^{*2}\cos^2{\theta}+4E^{*4}\right) </math></center> |
In the Ultra-relativistic limit as <math> E \approx p</math> | In the Ultra-relativistic limit as <math> E \approx p</math> | ||
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}\sin^4{\theta}}\left( \cos^4{\theta}+6\cos^2{\theta}+9\right)=\frac{\alpha ^2}{4E^{*2}\sin^4{\theta}}\left( | + | |
+ | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}\sin^4{\theta}}\left( \cos^4{\theta}+6\cos^2{\theta}+9\right)=\frac{\alpha ^2\left(3+\cos^2{\theta}\right)^2}{4E^{*2}\sin^4{\theta}} </math></center> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | In the non-relativistic limit as <math> E \approx m</math> | ||
+ | |||
+ | |||
+ | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4m^{*2}p^{*4}\sin^4{\theta}}\left( p^{*4}\cos^4{\theta}+2p^{*4}\cos^2{\theta}+p^{*4}+4m^{*2}p^{*2}+4m^{*2}p^{*2}\cos^2{\theta}+4m^{*4}\right) </math></center> | ||
---- | ---- | ||
Latest revision as of 18:36, 1 January 2019
Differential Cross-Section
Working in the center of mass frame
Determining the scattering amplitude in the center of mass frame
Using the fine structure constant (
)
In the center of mass frame the Mandelstam variables are given by:
Calculating the parts to have common denominators:
Combing like terms further,
Expressing this as the differential cross-section
In the Ultra-relativistic limit as
In the non-relativistic limit as