Difference between revisions of "Relativistic Differential Cross-section"

From New IAC Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
<center><math>\underline{\textbf{Navigation}}</math></center>
 +
 +
<center>
 +
[[Lorentz_Transformation_to_Lab_Frame|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]]
 +
[[CED_Verification_of_DC_Angle_Theta_and_Wire_Correspondance|<math>\vartriangleright </math>]]
 +
</center>
 +
 
=Relativistic Differential Cross-section=
 
=Relativistic Differential Cross-section=
  
Line 26: Line 34:
  
 
   
 
   
<center><math>(E_1^')^2=(\vec p_{1}^{'})^2+(m_{1})^{2}</math></center>
+
<center><math>(E_{1}^{'})^2=(\vec p_{1}^{'})^2+(m_{1})^{2}</math></center>
  
  
Line 59: Line 67:
  
 
<center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_{f}}{\mathbf p_{i}}|\mathcal {M}|^2</math></center>
 
<center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_{f}}{\mathbf p_{i}}|\mathcal {M}|^2</math></center>
 +
 +
 +
----
 +
 +
<center><math>\underline{\textbf{Navigation}}</math></center>
 +
 +
<center>
 +
[[Lorentz_Transformation_to_Lab_Frame|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]]
 +
[[CED_Verification_of_DC_Angle_Theta_and_Wire_Correspondance|<math>\vartriangleright </math>]]
 +
</center>

Latest revision as of 20:51, 29 December 2018

Navigation_

Relativistic Differential Cross-section

dQ is the invariant Lorentz phase space factor



and F is the flux of incoming particles








<\center>




In the center of mass frame