Difference between revisions of "Relativistic Differential Cross-section"

From New IAC Wiki
Jump to navigation Jump to search
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
<center><math>\underline{\textbf{Navigation}}</math></center>
 +
 +
<center>
 +
[[Lorentz_Transformation_to_Lab_Frame|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]]
 +
[[CED_Verification_of_DC_Angle_Theta_and_Wire_Correspondance|<math>\vartriangleright </math>]]
 +
</center>
 +
 
=Relativistic Differential Cross-section=
 
=Relativistic Differential Cross-section=
  
Line 15: Line 23:
  
  
<center><math>F_{cms}=4 \vec p_1^*\sqrt {s}</math></center>
+
<center><math>F_{cms}=4 \vec p_{1}^{*}\sqrt {s}</math></center>
  
  
  
<center><math>d\sigma=\frac{1}{4 \vec p_1\,^*\sqrt {s}}|\mathcal{M}|^2 dQ</math></center>
+
<center><math>d\sigma=\frac{1}{4 \vec p_{1}\,^{*}\sqrt {s}}|\mathcal{M}|^2 dQ</math></center>
  
  
  
<center><math>d^3 \vec p_1^'=\vec p^{'3}_1 d \vec p^'  d\Omega</math></center>
+
<center><math>d^3 \vec p_{1}^{'}=\vec p^{'3}_{1} d \vec p^{'} d\Omega</math></center>
  
 
   
 
   
<center><math>(E_1^')^2=(\vec p_1^')^2+(m_1)^2</math></center>
+
<center><math>(E_{1}^{'})^2=(\vec p_{1}^{'})^2+(m_{1})^{2}</math></center>
  
  
<center><math>E_1^' d E_1^'= \vec p_1^' d \vec p_1^'</math></center>
+
<center><math>E_{1}^{'} d E_{1}^{'}= \vec p_{1}^{'} d \vec p_{1}^{'}</math></center>
  
  
  
<center><math>dQ=\frac{1}{(4\pi)^2}\delta (E_1+E_2-E_1^'-E_2^')\frac{\vec p_1^'dE_1^'}{E_2^'}d\Omega</math><\center>
+
<center><math>dQ=\frac{1}{(4\pi)^2}\delta (E_{1}+E_{2}-E_{1}^{'}-E_{2}^{'})\frac{\vec p_{1}^{'}dE_{1}^{'}}{E_{2}^{'}}d\Omega</math><\center>
  
  
<center><math>W_i \equiv E_1+E_2 \qquad \qquad W_f \equiv E_1^'+E_2^'</math></center>
+
<center><math>W_{i} \equiv E_{1}+E_{2} \qquad \qquad W_f \equiv E_{1}^{'}+E_{2}^{'}</math></center>
  
  
  
<center><math>dW_f=dE_1^'+dE_2^'=\frac{\vec p_1^' d \vec p_1^'}{E_1^'}+\frac{p_2^' dp_2^'}{E_2^'}</math></center>
+
<center><math>dW_f=dE_{1}^{'}+dE_{2}^{'}=\frac{\vec p_{1}^{'} d \vec p_{1}^{'}}{E_{1}^{'}}+\frac{p_{2}^{'} dp_{2}^{'}}{E_{2}^{'}}</math></center>
  
  
 
In the center of mass frame  
 
In the center of mass frame  
<center><math>|\vec p_1^'|=|\vec p_2^'|=|\vec p_f^'| \rightarrow |\vec p_1^' d \vec p_1^'|=|\vec p_2^' d \vec p_2^'|=|\vec p_f^' d \vec p_f^'|</math></center>
+
<center><math>|\vec p_{1}^{'}|=|\vec p_{2}^{'}|=|\vec p_{f}^{'}| \rightarrow |\vec p_{1}^{'} d \vec p_{1}^{'}|=|\vec p_{2}^{'} d \vec p_{2}^{'}|=|\vec p_{f}^{'} d \vec p_{f}^{'}|</math></center>
 +
 
 +
 
 +
 
 +
<center><math>dW_{f}=\frac{W_{f}}{E_{2}^{'}}dE_{1}^{'}</math></center>
 +
 
  
  
 +
<center><math>dQ_{cms}=\frac{1}{(4\pi)^2}\delta (W_i-W_f)\frac{\vec p_{f} dW_{f}}{W_{f}}d\Omega</math></center>
  
<center><math>dW_f=\frac{W_f}{E_2^'}dE_1^'</math></center>
 
  
 +
<center><math>dQ_{cms}=\frac{1}{(4\pi)^2}\frac{\vec p_{f}}{\sqrt {s}}d\Omega</math></center>
  
  
<center><math>dQ_{cms}=\frac{1}{(4\pi)^2}\delta (W_i-W_f)\frac{\vec p_f dW_f}{W_f}d\Omega</math></center>
+
<center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_{f}}{\mathbf p_{i}}|\mathcal {M}|^2</math></center>
  
  
<center><math>dQ_{cms}=\frac{1}{(4\pi)^2}\frac{\vec p_f}{\sqrt s}d\Omega</math></center>
+
----
  
 +
<center><math>\underline{\textbf{Navigation}}</math></center>
  
<center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_f}{\mathbf p_i}|\mathcal {M}|^2</math></center>
+
<center>
 +
[[Lorentz_Transformation_to_Lab_Frame|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]]
 +
[[CED_Verification_of_DC_Angle_Theta_and_Wire_Correspondance|<math>\vartriangleright </math>]]
 +
</center>

Latest revision as of 20:51, 29 December 2018

Navigation_

Relativistic Differential Cross-section

dσ=1F|M|2dQ

dQ is the invariant Lorentz phase space factor


dQ=(2π)4δ4(p1+p2p1p2)d3p1(2π)32E1d3p2(2π)32E2


and F is the flux of incoming particles



Fcms=4p1s


dσ=14p1s|M|2dQ


d3p1=p31dpdΩ


(E1)2=(p1)2+(m1)2


E1dE1=p1dp1


dQ=1(4π)2δ(E1+E2E1E2)p1dE1E2dΩ<\center>


WiE1+E2WfE1+E2


dWf=dE1+dE2=p1dp1E1+p2dp2E2


In the center of mass frame

|p1|=|p2|=|pf||p1dp1|=|p2dp2|=|pfdpf|


dWf=WfE2dE1


dQcms=1(4π)2δ(WiWf)pfdWfWfdΩ


dQcms=1(4π)2pfsdΩ


dσdΩ=164π2spfpi|M|2



Navigation_