Difference between revisions of "Occupancy for Sector 1"

From New IAC Wiki
Jump to navigation Jump to search
 
(63 intermediate revisions by the same user not shown)
Line 1: Line 1:
  
<center><math>\textbf{Navigation}</math></center>
+
<center><math>\underline{\textbf{Navigation}}</math></center>
  
 
<center>
 
<center>
Line 27: Line 27:
  
 
=LUND File Output=
 
=LUND File Output=
 
+
Uniform spacing in Lab frame, not in CM frame.
0.1 degree spacing in the Lab frame.  CM Frame is not evenly spaced.
+
==0.1 degree spacing for θ in the Lab frame==
  
  
 
[[File:MolThetaLab_LUND_DC_limits.png]][[File:MolThetaCM_LUND_DC_limits.png]]
 
[[File:MolThetaLab_LUND_DC_limits.png]][[File:MolThetaCM_LUND_DC_limits.png]]
  
Applying the weight
+
==0.05 degree spacing for θ in the Lab frame==
 
 
[[File:MolThetaLab_DClimits_integral.png]][[File:CosMolThetaLab_weightedDClimits.png]]
 
 
 
 
 
[[File:MolThetaCM_DClimits_weighted_rebin_integral.png]][[File:CosMolThetaCM_weightedDClimits.png]]
 
 
 
 
 
Looking at the angles and the associated weight, we can find the sums
 
 
 
[[Once_Angles_and_weight]]=3399.930890560805437
 
 
 
[[Total_Angles_and_weight]]=1023379.198058736044914
 
 
 
 
 
Checking with Mathematica
 
 
 
[[File:CrossSectionMathematica1.png]]
 
 
 
 
 
"Integrating" with Cosine term
 
 
 
[[File:CrossSectionMathematica2.png]]
 
  
 
=Finding the Cross Section=
 
=Finding the Cross Section=
 
+
==Total cross section over φ==
 
[[File:CrossSectionMathematicaProof.png]]
 
[[File:CrossSectionMathematicaProof.png]]
  
 +
==Total cross section over DC limits==
  
Performing a Riemann sum for <math>-30^{\circ} \lt \phi \lt 30^{\circ}</math>
 
 
 
[[File:CrossSection60deg.png]]
 
 
 
 
The cross section should be equal between both frames since the number of particles is an invariant.  The differential cross section must differ between frames since the solid angle does vary.
 
 
<center><math>\sigma_{(CM)}=\sigma{(Lab)}</math></center>
 
 
 
<center><math>\frac{d\sigma}{d\Omega}_{(CM)} d\Omega_{(CM)}=\frac{d\sigma}{d\Omega}_{(Lab)} d\Omega_{(Lab)}</math></center>
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega}_{(CM)} \sin \theta_{(CM)}\ d\theta_{(CM)}\ d\phi=\frac{d\sigma}{d\Omega}_{(Lab)}  \sin \theta_{(Lab)}\ d\theta_{(Lab)}\ d\phi</math></center>
 
 
 
<center><math>\rightarrow \frac{d\sigma}{d\Omega}_{(Lab)}=\frac{d\sigma}{d\Omega}_{(CM)} \frac{\sin \theta_{(CM)}\ d\theta_{(CM)}\ d\phi}{ \sin \theta_{(Lab)}\ d\theta_{(Lab)}\ d\phi}</math></center>
 
 
 
 
<center><math>\rightarrow d\sigma_{(Lab)}=\frac{d\sigma}{d\Omega}_{(CM)} \frac{\sin \theta_{(CM)}\ d\theta_{(CM)}\ d\phi}{ \sin \theta_{(Lab)}\ d\theta_{(Lab)}\ d\phi}\sin \theta_{(Lab)} d\theta_{(Lab)}\ d\phi</math></center>
 
 
 
[[File:MolThetaCMdsigmaIntegral.png]][[File:MolThetaLabdSigmaIntegral.png]]
 
 
[[File:AssociatedWeights2.png]][[File:dSigmaCMLab.png]]
 
 
==Adjust for DC Sector 1 Limits==
 
 
[[File:IntegralDCLimitsdSigmaCM.png]][[File:IntegralDCLimitsdSigmaLab.png]]
 
 
=GEMC Cross Section=
 
 
 
Only taking GEMC hits in Sector 1 with Track ID of the mother of the FP equal to zero:
 
 
[[File:DSigmaVsThetaLabOverlay.png]] <math>\frac{0.009731\ barn}{0.013924\ barn}=70\%</math>Efficiency
 
 
[[File:CorrelatedPhiThetaHits.png]][[File:PhiThetaBinsdSigma.png]]
 
 
 
[[File:LUNDPhiThetaBins.png]][[File:LUNDPhiThetaBinsWeighted.png]]
 
 
 
Taking GEMC hits with ANY Track ID of the mother of the FP :
 
 
 
[[File:DSigmaVsThetaLabWithAll.png]]<math>\frac{0.012433\ barn}{0.013924\ barn}=90\%</math>Efficiency
 
 
[[File:CORRELATED_PhiThetaHits.png]][[File:CORRELATED_PhiThetaHits_dSigma.png]]
 
 
 
[[File:NOTCORRELATED_PhiThetaHits.png]][[File:NOTCORRELATED_PhiThetaHits_dSigma.png]]
 
 
 
[[File:LUNDPhiThetaBins.png]][[File:LUNDPhiThetaBinsWeighted.png]]
 
 
=Using the Cross Section=
 
  
 
If we make the assumption that the beam of incoming electrons is a flux over an area for a given time,
 
If we make the assumption that the beam of incoming electrons is a flux over an area for a given time,
Line 167: Line 84:
  
  
 +
<center><math>\rightarrow \frac{dN_{scattered}}{t_{run}}=\frac{d\sigma}{d\Omega_{CM}}\frac{\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}}{\sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}}\frac{N_{incident}}{t_{run}} \sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}</math></center>
  
<center><math>\rightarrow \frac{1}{t_{run}}\int dN_{scattered}=\frac{N_{scattered}}{t_{run}}=\iint\limits_{\Omega}\frac{d\sigma}{d\Omega_{CM}}\frac{\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}}{\sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}}\Phi \sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}</math></center>
 
  
  
Expressing the differential cross section as a function of the Center of Mass scattering angle Theta, since it does not depend on Phi or the radius
+
<center><math>\rightarrow \frac{dN_{scattered}}{N_{incident}}=\frac{d\sigma}{d\Omega_{CM}}\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}</math></center>
 +
Performing a Riemann sum for <math>-30^{\circ} \lt \phi \lt 30^{\circ}</math>
  
 +
 +
[[File:CrossSection60deg.png]]
  
<center><math>\frac{d\sigma}{d\Omega_{CM}}=\sigma(\theta_{CM})</math></center>
 
  
  
 +
The cross section should be equal between both frames since the number of particles is an invariant.  The differential cross section must differ between frames since the solid angle does vary.
  
We can approximate the integral over the solid angle by using a left handed Riemann sum.  A right handed sum would produce an overestimate.
+
<center><math>\sigma_{(CM)}=\sigma{(Lab)}</math></center>
  
<center><math>\frac{1}{t_{run}}\sum_{\theta_{Lab}}N_{scattered(\theta_{Lab})}=\sum_{\theta(Lab)}\sum_{\phi}\sigma(\theta_{CM})\frac{\sin \theta_{CM}\ \Delta\theta_{CM}\ \Delta\phi_{CM}}{\sin \theta_{Lab}\ \Delta\theta_{Lab}\ \Delta\phi_{Lab}}\Phi \sin \theta_{Lab}\ \Delta\theta_{Lab}\ \Delta\phi_{Lab}</math></center>
 
  
 +
<center><math>\frac{d\sigma}{d\Omega}_{(CM)} d\Omega_{(CM)}=\frac{d\sigma}{d\Omega}_{(Lab)} d\Omega_{(Lab)}</math></center>
  
  
Converting current into flux
 
  
<center><math>50nA=\frac{50\times 10^{-9}\ A}{1} \times \frac{1\ C}{1\ A} \times \frac{1\ e^{-}}{1\ s} \times \frac{1}{1.602\times 10^{-19}C}\Rightarrow 3.12\times 10^{11}\ \frac{1}{s}=\Phi_{50nA}</math></center>
 
  
[[File:50A.png]]
+
<center><math>\frac{d\sigma}{d\Omega}_{(CM)} \sin \theta_{(CM)}\ d\theta_{(CM)}\ d\phi=\frac{d\sigma}{d\Omega}_{(Lab)}  \sin \theta_{(Lab)}\ d\theta_{(Lab)}\ d\phi</math></center>
  
  
<center><math>75nA=\frac{75\times 10^{-9}\ A}{1} \times \frac{1\ C}{1\ A} \times \frac{1\ e^{-}}{1\ s} \times \frac{1}{1.602\times 10^{-19}C}\Rightarrow 4.68\times 10^{11}\ \frac{1}{s}=\Phi_{75nA}</math></center>
 
  
[[File:75A.png]]
+
From the expression found earlier:
 +
 
 +
<center><math>\rightarrow \frac{dN_{scattered}}{N_{incident}}=\frac{d\sigma}{d\Omega_{CM}}\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}</math></center>
 +
 
 +
 
 +
<center><math>\rightarrow \frac{d\sigma}{d\Omega}_{(Lab)}=\frac{d\sigma}{d\Omega}_{(CM)} \frac{\sin \theta_{(CM)}\ d\theta_{(CM)}\ d\phi}{ \sin \theta_{(Lab)}\ d\theta_{(Lab)}\ d\phi}</math></center>
 +
 
 +
 
 +
 
 +
<center><math>\rightarrow d\sigma_{(Lab)}=\frac{d\sigma}{d\Omega}_{(CM)} \frac{\sin \theta_{(CM)}\ d\theta_{(CM)}\ d\phi}{ \sin \theta_{(Lab)}\ d\theta_{(Lab)}\ d\phi}\sin \theta_{(Lab)} d\theta_{(Lab)}\ d\phi</math></center>
 +
 
 +
 
 +
[[File:MolThetaCMdsigmaIntegral.png]][[File:MolThetaLabdSigmaIntegral.png]]
 +
 
 +
[[File:AssociatedWeights2.png]][[File:dSigmaCMLab.png]]
 +
 
 +
==Adjust for DC Sector 1 Limits==
  
 +
[[File:IntegralDCLimitsdSigmaCM.png]][[File:IntegralDCLimitsdSigmaLab.png]]
  
<center><math>100nA=\frac{100\times 10^{-9}\ A}{1} \times \frac{1\ C}{1\ A} \times \frac{1\ e^{-}}{1\ s} \times \frac{1}{1.602\times 10^{-19}C}\Rightarrow 6.24\times 10^{11}\ \frac{1}{s}=\Phi_{100nA}</math></center>
+
=GEMC Cross Section=
  
[[File:100A.png]]
+
==CORRELATED HITS==
  
 +
{| class="wikitable"
 +
  |+ CORRELATED conditions
 +
|-
 +
  ! GEMC conditions
 +
  ! Meaning
 +
|-
 +
| colspan=2|Uses LUND θ and φ values
 +
|-
 +
  | k=0
 +
  | 1st registered hit
 +
|-
 +
  | dpid[k]=11
 +
  | Electron
 +
|-
 +
  | tid[k]=2
 +
  | Moller electron from LUND file
 +
|-
 +
  | mpid[k]=0
 +
  | The mother particle implied from LUND file
 +
|-
 +
  | sector[k]=1
 +
  | Hit is in sector 1
 +
|}
 +
{| class="wikitable"
 +
  |+ ACTUAL conditions
 +
|-
 +
  ! GEMC conditions
 +
  ! Meaning
 +
|-
 +
| colspan=2|Calculates θ and φ values from AVG positions
 +
|-
 +
  | k=0
 +
  | 1st registered hit
 +
|-
 +
  | dpid[k]=11
 +
  | Electron
 +
|-
 +
  | tid[k]=2
 +
  | Moller electron from LUND file
 +
|-
 +
  | mpid[k]=0
 +
  | The mother particle implied from LUND file
 +
|-
 +
  | sector[k]=1
 +
  | Hit is in sector 1
 +
|}
  
<center><math>125nA=\frac{125\times 10^{-9}\ A}{1} \times \frac{1\ C}{1\ A} \times \frac{1\ e^{-}}{1\ s} \times \frac{1}{1.602\times 10^{-19}C}\Rightarrow 7.80\times 10^{11}\ \frac{1}{s}=\Phi_{125nA}</math></center>
 
  
[[File:125A.png]]
+
===Bin Spacing of 0.05 degrees for θ in Lab Frame===
 +
[[File:TheoryPhiThetaBins05spacing.png]][[File:TheoryPhiThetaBins05spacingWeighted.png]]
  
 +
===Bin Spacing of 0.1 degrees for θ in Lab Frame===
 +
[[File:TheoryPhiThetaBins1spacing.png]][[File:TheoryPhiThetaBins1spacingWeightedWSigma.png]]
  
<center><math>150nA=\frac{150\times 10^{-9}\ A}{1} \times \frac{1\ C}{1\ A} \times \frac{1\ e^{-}}{1\ s} \times \frac{1}{1.602\times 10^{-19}C}\Rightarrow 9.36\times 10^{11}\ \frac{1}{s}=\Phi_{150nA}</math></center>
+
[[File:CORRELATEDPhiThetaBins1spacing.png]][[File:CORRELATEDPhiThetaBins1spacingWeightedWSigma.png]]
  
[[File:150A.png]]
+
[[File:ACTUALPhiThetaBins1spacing.png]][[File:ACTUALPhiThetaBins1spacingWeightedWSigma.png]]
  
 
=Number of Hits on Wires=
 
=Number of Hits on Wires=
 +
Not all 1st hits are on layer 1, so we use the correlated theoretical wire number associated with the LUND Theta and Phi values.  The theoretical model has events which are detected by physically impossible valued wires.  If we limit the lowest wire value to 0.5 and the highest to less than 112.5
  
Not all 1st hits are on layer 1.  Using the correlated theoretical wire number associated with the LUND Theta and Phi values:
 
  
 +
==Bin Spacing of 0.05 degrees for θ in Lab Frame==
  
[[File:WireBinsDCLimits.png]][[File:DSigmaVsWireBins.png]]
+
==Bin Spacing of 0.1 degrees for θ in Lab Frame==
  
 +
[[File:TheoryWireHits1spacing.png]][[File:TheoryWireHits1spacingWeightedwSigma.png]]
  
The theoretical model has events which are detected by physically impossible valued wires.  If we limit the lowest wire value to 0.5 and the highest to less than 112.5
 
  
[[File:Wire1TheoreticalWeighted.png|frame|none|alt=Alt text|σ=0.000014 barn]]
+
[[File:WireBins1stHITSCORRELATED1spacing.png]][[File:WireBins1stHITSCORRELATEDWeightedWSigma1spacing.png]]
[[File:Wire1ActualWeighted.png|frame|none|alt=Alt text|σ=0.000013 barn]]
 
[[File:Wire1CorrelatedlWeighted.png|frame|none|alt=Alt text|σ=0.000013 barn]]
 
  
Using the histogram integral function we find the sum of the values for the wire 1 bin. Collecting the individual <math>d\sigma</math> for each theoretical and physical hits on DC wires.
+
[[File:WireBins1stHITSACTUAL1spacing.png]][[File:WireBins1stHITSACTUALWeightedWSigma1spacing.png]]
  
[[Wire Based Theoretical Hits σ=0.00001387 barn|WireBasedTheoreticalHits]]
+
[[File:Sector1HitsMoller1spacing.png]][[File:Sector1HitsMollerWeightedWSigma1spacing.png]]
  
[[File:DChits.text]]
+
[[File:Sector1HitsNoise1spacing.png]][[File:Sector1HitsNoiseWeightedWSigma1spacing.png]]
  
 
=Occupancy=
 
=Occupancy=
Line 262: Line 243:
  
  
For <math>5^{\circ}>\theta<40^{\circ}\ -30^{\circ}>\phi<30^{\circ}</math>
+
===Clas12mon event counting===
 +
====000====
 +
 
 +
[[File:clas12Count000.png]]
 +
 
 +
[[File:000Part1.png]]
 +
 
 +
.
 +
 
 +
.
 +
 
 +
.
 +
 
 +
.
 +
 
 +
[[File:000Part2.png]]
 +
 
 +
====001====
 +
 
 +
[[File:clas12Count001.png]]
 +
 
 +
[[File:01dchipoPart1.png]]
 +
 
 +
.
 +
 
 +
.
 +
 
 +
.
 +
 
 +
.
 +
 
 +
[[File:01dchipoPart2.png]]
 +
 
 +
====000 & 001 combined====
 +
 
 +
[[File:clas12CountCombined000&001.png]]
 +
 
 +
[[File:000&001Part1.png]]
 +
 
 +
.
 +
 
 +
.
 +
 
 +
.
 +
 
 +
.
 +
 
 +
[[File:000&001Part2.png]]
 +
 
 +
 
 +
===evio Counts===
 +
 
 +
[[File:evioCountPart1.png]]
  
[[File:clas12monNoSolNoShield.png]]
+
[[File:evioCountPart2.png]]
  
  
FOR DC Limits
+
==FOR DC Limits==
  
[[File:OccupancyDCLimits_Unweighted.png]]
+
[[File:dcOccupancyUnweighted.png]]
  
 
==Calculating==
 
==Calculating==

Latest revision as of 02:24, 22 May 2018

[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]


A bash script to run the GEMC simulations is created. tcsh scripts to run root2evio on lds2 is called using sshpass. The lds2 scripts use sshfs The main script on lds3:

BUILD_GEMC_SIMULATION.sh


The 3 scripts on lds2:

first_commands.tcsh

second_commands.tcsh

last_commands.tcsh


LUND File Output

Uniform spacing in Lab frame, not in CM frame.

0.1 degree spacing for θ in the Lab frame

MolThetaLab LUND DC limits.pngMolThetaCM LUND DC limits.png

0.05 degree spacing for θ in the Lab frame

Finding the Cross Section

Total cross section over φ

CrossSectionMathematicaProof.png

Total cross section over DC limits

If we make the assumption that the beam of incoming electrons is a flux over an area for a given time,

[math]N_{incident}=\Phi\ A_{beam}\ t_{run} \rightarrow dN_{incident}=\Phi\ dA_{beam}\ t_{run}\rightarrow\ \frac{dN_{incident}}{ dA_{beam}}=\Phi\ t_{run}[/math]


Using the definition of the differential cross section:

[math]\frac{d\sigma}{d\Omega}\equiv \frac{ \Biggl(\frac{dN_{scattered}}{d\Omega} \Biggr)}{\Biggl(\frac{dN_{incident}}{dA}\Biggr)}\rightarrow \frac{d\sigma}{d\Omega}\Biggl(\frac{dN_{incident}}{dA}\Biggr)=\Biggl(\frac{dN_{scattered}}{d\Omega} \Biggr)[/math]


Substituting using the flux

[math] \frac{d\sigma}{d\Omega}\Biggl(\frac{dN_{incident}}{dA}\Biggr)=\Biggl(\frac{dN_{scattered}}{d\Omega} \Biggr)\rightarrow \frac{d\sigma}{d\Omega}\Phi\ t_{run}=\Biggl(\frac{dN_{scattered}}{d\Omega} \Biggr)[/math]


[math]\rightarrow dN_{scattered}= \frac{d\sigma}{d\Omega}\Phi d\Omega= \frac{d\sigma}{d\Omega}\Phi\ t_{run}\ \sin \theta\ d\theta\ d\phi[/math]


Since the differential cross section is known in the Center of Mass frame of reference, but measurements are taken in the Lab Frame, a transformation must occur.

[math]\rightarrow dN_{scattered}= \frac{d\sigma}{d\Omega_{Lab}}\Phi\ t\ \sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}[/math]


[math]\frac{d\sigma}{d\Omega_{Lab}}\sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}=\frac{d\sigma}{d\Omega_{CM}}\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}[/math]


[math]\frac{d\sigma}{d\Omega_{Lab}}=\frac{d\sigma}{d\Omega_{CM}}\frac{\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}}{\sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}}[/math]


[math]\rightarrow dN_{scattered}=\frac{d\sigma}{d\Omega_{CM}}\frac{\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}}{\sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}}\Phi\ t_{run}\ \sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}[/math]


If we divide both sides by time


[math]\rightarrow \frac{dN_{scattered}}{t_{run}}=\frac{d\sigma}{d\Omega_{CM}}\frac{\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}}{\sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}}\Phi \sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}[/math]


[math]\rightarrow \frac{dN_{scattered}}{t_{run}}=\frac{d\sigma}{d\Omega_{CM}}\frac{\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}}{\sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}}\frac{N_{incident}}{t_{run}} \sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}[/math]


[math]\rightarrow \frac{dN_{scattered}}{N_{incident}}=\frac{d\sigma}{d\Omega_{CM}}\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}[/math]

Performing a Riemann sum for [math]-30^{\circ} \lt \phi \lt 30^{\circ}[/math]


CrossSection60deg.png


The cross section should be equal between both frames since the number of particles is an invariant. The differential cross section must differ between frames since the solid angle does vary.

[math]\sigma_{(CM)}=\sigma{(Lab)}[/math]


[math]\frac{d\sigma}{d\Omega}_{(CM)} d\Omega_{(CM)}=\frac{d\sigma}{d\Omega}_{(Lab)} d\Omega_{(Lab)}[/math]



[math]\frac{d\sigma}{d\Omega}_{(CM)} \sin \theta_{(CM)}\ d\theta_{(CM)}\ d\phi=\frac{d\sigma}{d\Omega}_{(Lab)} \sin \theta_{(Lab)}\ d\theta_{(Lab)}\ d\phi[/math]


From the expression found earlier:

[math]\rightarrow \frac{dN_{scattered}}{N_{incident}}=\frac{d\sigma}{d\Omega_{CM}}\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}[/math]


[math]\rightarrow \frac{d\sigma}{d\Omega}_{(Lab)}=\frac{d\sigma}{d\Omega}_{(CM)} \frac{\sin \theta_{(CM)}\ d\theta_{(CM)}\ d\phi}{ \sin \theta_{(Lab)}\ d\theta_{(Lab)}\ d\phi}[/math]


[math]\rightarrow d\sigma_{(Lab)}=\frac{d\sigma}{d\Omega}_{(CM)} \frac{\sin \theta_{(CM)}\ d\theta_{(CM)}\ d\phi}{ \sin \theta_{(Lab)}\ d\theta_{(Lab)}\ d\phi}\sin \theta_{(Lab)} d\theta_{(Lab)}\ d\phi[/math]


MolThetaCMdsigmaIntegral.pngMolThetaLabdSigmaIntegral.png

AssociatedWeights2.pngDSigmaCMLab.png

Adjust for DC Sector 1 Limits

IntegralDCLimitsdSigmaCM.pngIntegralDCLimitsdSigmaLab.png

GEMC Cross Section

CORRELATED HITS

CORRELATED conditions
GEMC conditions Meaning
Uses LUND θ and φ values
k=0 1st registered hit
dpid[k]=11 Electron
tid[k]=2 Moller electron from LUND file
mpid[k]=0 The mother particle implied from LUND file
sector[k]=1 Hit is in sector 1
ACTUAL conditions
GEMC conditions Meaning
Calculates θ and φ values from AVG positions
k=0 1st registered hit
dpid[k]=11 Electron
tid[k]=2 Moller electron from LUND file
mpid[k]=0 The mother particle implied from LUND file
sector[k]=1 Hit is in sector 1


Bin Spacing of 0.05 degrees for θ in Lab Frame

TheoryPhiThetaBins05spacing.pngTheoryPhiThetaBins05spacingWeighted.png

Bin Spacing of 0.1 degrees for θ in Lab Frame

TheoryPhiThetaBins1spacing.pngTheoryPhiThetaBins1spacingWeightedWSigma.png

CORRELATEDPhiThetaBins1spacing.pngCORRELATEDPhiThetaBins1spacingWeightedWSigma.png

ACTUALPhiThetaBins1spacing.pngACTUALPhiThetaBins1spacingWeightedWSigma.png

Number of Hits on Wires

Not all 1st hits are on layer 1, so we use the correlated theoretical wire number associated with the LUND Theta and Phi values. The theoretical model has events which are detected by physically impossible valued wires. If we limit the lowest wire value to 0.5 and the highest to less than 112.5


Bin Spacing of 0.05 degrees for θ in Lab Frame

Bin Spacing of 0.1 degrees for θ in Lab Frame

TheoryWireHits1spacing.pngTheoryWireHits1spacingWeightedwSigma.png


WireBins1stHITSCORRELATED1spacing.pngWireBins1stHITSCORRELATEDWeightedWSigma1spacing.png

WireBins1stHITSACTUAL1spacing.pngWireBins1stHITSACTUALWeightedWSigma1spacing.png

Sector1HitsMoller1spacing.pngSector1HitsMollerWeightedWSigma1spacing.png

Sector1HitsNoise1spacing.pngSector1HitsNoiseWeightedWSigma1spacing.png

Occupancy

LH2_NOSol_0Tor_11GeV_IsotropicPhi_v2_6_ShieldOut

Run

./BUILD_GEMC_SIMULATION.sh 

DVMacro

Clas12Mon

Create hipo file


Move hipo file to clas12mon folder

mv LH2_NOSol_0Tor_11GeV_IsotropicPhi_v2_6_ShieldOut.hipo ~/clas12mon

Run monitor program

./README

Load hipo file

"Press H for hipo"
"Press play"
"Switch to 


Clas12mon event counting

000

Clas12Count000.png

000Part1.png

.

.

.

.

000Part2.png

001

Clas12Count001.png

01dchipoPart1.png

.

.

.

.

01dchipoPart2.png

000 & 001 combined

Clas12CountCombined000&001.png

000&001Part1.png

.

.

.

.

000&001Part2.png


evio Counts

EvioCountPart1.png

EvioCountPart2.png


FOR DC Limits

DcOccupancyUnweighted.png

Calculating

[math]N_0=\Delta t \cdot R_{events}=\Delta t \cdot \frac{N_{events}}{t_{simulated}}=250\times 10^{-9}\ s \cdot \frac{98181}{9.3\times 10^{-6}\ s}=2639[/math]


[math]Occupancy=\frac{N_{hits}}{N_0}=\frac{N_{hits}}{\Delta t \cdot R_{events}}=\frac{t_{simulated}\cdot N_{hits}}{N_{events}\cdot \Delta t}=[/math]