|
|
(995 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
− | == Overview == | + | ==Class Admin== |
| | | |
− | === Particle Detection ===
| |
− | A device detects a particle only after the particle transfers energy to the device.
| |
| | | |
− | Energy intrinsic to a device depends on the material used in a device
| + | [[TF_SPIM_ClassAdmin]] |
| | | |
− | Some device of material with an average atomic number (<math>Z</math>) is at some temperature (<math>T</math>). The materials atoms are in constant thermal motion (unless T = zero degrees Klevin).
| + | == Homework Problems== |
| + | [[HomeWork_Simulations_of_Particle_Interactions_with_Matter]] |
| | | |
− | Statistical Thermodynamics tells us that the canonical energy distribution of the atoms is given by the Maxwell-Boltzmann statistics such that
| + | =Introduction= |
| | | |
− | <math>P(E) = \frac{1}{kT} e^{-\frac{E}{kT}}</math>
| + | [[TF_SPIM_Intro]] |
| | | |
− | <math>P(E)</math> represents the probability of any atom in the system having an energy <math>E</math> where
| + | = Energy Loss = |
| | | |
− | <math>k= 1.38 \times 10^{-23} \frac{J}{mole \cdot K}</math>
| + | [[TF_SPIM_StoppingPower]] |
| | | |
− | Note: You may be more familiar with the Maxwell-Boltzmann distribution in the form
| + | Ann. Phys. vol. 5, 325, (1930) |
| | | |
− | <math>N(\nu) = 4 \pi N \left ( \frac{m}{2\pi k T} \right ) ^{3/2} v^2 e^{-mv^2/2kT}</math>
| + | =Interactions of Electrons and Photons with Matter= |
| | | |
− | where <math>N(v) \Delta v</math> would represent the molesules in the gas sample with speeds between <math>v</math> and <math>v + \Delta v</math>
| + | [[TF_SPIM_e-gamma]] |
| | | |
− | ==== Example 1: P(E=5 eV) ====
| + | Physics Reference |
| | | |
− | ;What is the probability that an atom in a 12.011 gram block of carbon would have and energy of 5 eV?
| + | https://indico.cern.ch/event/679723/contributions/2792554/attachments/1559217/2454299/PhysicsReferenceManual.pdf |
| | | |
− | First lets check that the probability distribution is Normailized; ie: does <math>\int_0^{\infty} P(E) dE =1</math>?
| + | Physics lists |
| + | https://geant4.web.cern.ch/documentation/dev/plg_html/PhysicsListGuide/physicslistguide.html |
| | | |
| + | Livermore is the default model |
| | | |
− | <math>\int_0^{\infty} P(E) dE = \int_0^{\infty} \frac{1}{kT} e^{-\frac{E}{kT}} dE = \frac{1}{kT} \frac{1}{\frac{1}{-kT}} e^{-\frac{E}{kT}} \mid_0^{\infty} = - [e^{-\infty} - e^0]= 1</math>
| + | https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_02046.pdf |
| | | |
− | <math>P(E=5eV)</math> is calculated by integrating P(E) over some energy interval ( ie:<math> N(v) dv</math>). I will arbitrarily choose 4.9 eV to 5.1 eV as a starting point.
| |
| | | |
| + | New PW models |
| | | |
− | <math>\int_{4.9 eV}^{5.1 eV} P(E) dE = - [e^{-5.1 eV/kT} - e^{4.9 eV/kT}]</math>
| + | https://indico.cern.ch/event/629841/contributions/2712690/attachments/1518832/2371867/PE_models_G4GV.pdf |
| | | |
− | <math>k= (1.38 \times 10^{-23} \frac{J}{mole \cdot K} ) = (1.38 \times 10^{-23} \frac{J}{mole \cdot K} )(6.42 \times 10^{18} \frac{eV}{J})= 8.614 \times 10^{-5} \frac {eV}{mole \cdot K}</math>
| + | https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsReferenceManual/html/index.html |
| | | |
− | assuming a room empterature of <math>T=300 K</math>
| + | https://opengate.readthedocs.io/en/latest/introduction.html |
| | | |
− | then<math>kT = 0.0258 \frac{eV}{mole}</math>
| + | = Hadronic Interactions = |
| | | |
− | and
| + | [[TF_SPIM_HadronicInteractions]] |
| | | |
− | <math>\int_{4.9 eV}^{5.1 eV} P(E) dE = - [e^{-5.1/0.0258} - e^{4.9/0.0258}] = 4.48 \times 10^{-83} - 1.9 \times 10^{-86} \approx 4.48 \times 10^{-83}</math>
| + | = Final Project= |
| | | |
− | or in other words the precise mathematical calculation of the probability may be approximated by just using the distribution function alone
| + | A final project will be submitted that will be graded with the following metrics: |
| | | |
− | <math>P(E=5eV) = e^{-5/0.0258} \approx 10^{-85}</math>
| + | 1.) The document must be less than 15 pages. |
| | | |
− | This approximation breaks down as <math>E \rightarrow 0.0258 eV</math>
| + | 2.) The document must contain references in a bibliography (5 points) . |
| | | |
− | Since we have 12.011 grams of carbon and 1 mole of carbon = 12.011 g = <math>6 \times 10^{23} </math>carbon atoms
| + | 3.) A comparison must be made between GEANT4's prediction and either the prediction of someone else or an experimental result(30 points). |
| | | |
− | We do not expect to see a 5 eV carbon atom in a sample size of <math>6 \times 10^{23} </math> carbon atoms when the probability of observing such an atom is <math>\approx 10^{-85}</math>
| + | 4.) The graphs must be of publication quality with font sizes similar or larger than the 12 point font (10 points). |
| | | |
− | The energy we expect to see would be calculated by | + | 5.) The document must be grammatically correct (5 points). |
| | | |
− | <math><E> = \int_{0}^{\infty} E \cdot P(E) dE</math>
| + | 6.) The document format must contain the following sections: An abstract of 5 sentences (5 points) , an Introduction(10 points), a Theory section (20 points) , if applicable a section describing the experiment that was simulated, a section delineating the comparisons that were made, and a conclusion( 15 points). |
| | | |
− | If you used this block of carbon as a detector you would easily notice an event in which a carbon atom absorbed 5 eV of energy as compared to the energy of a typical atom in the carbon block.
| + | =Resources= |
| | | |
− | ----
| + | [http://geant4.web.cern.ch/geant4/ GEANT4 Home Page] |
| | | |
− | ;Silicon detectors and Ionization chambers are two commonly used devices for detecting radiation.
| + | [http://root.cern.ch ROOT Home page] |
| | | |
− | approximately 1 eV of energy is all that you need to create an electron-ion pair in Silicon
| + | [http://conferences.fnal.gov/g4tutorial/g4cd/Documentation/WorkshopExercises/ Fermi Lab Example] |
| | | |
− | <math>P(E=1 eV) = e^{-1/0.0258} \approx 10^{-17}</math>
| |
| | | |
− | approximately 10 eV of energy is needed to ionize an atom in a gas chamber
| + | [http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html NIST Range Tables] |
| | | |
− | <math>P(E=10 eV) = e^{-10/0.0258} \approx 10^{-169}</math>
| + | [http://ie.lbl.gov/xray/ X-ray specturm] |
| | | |
| + | [[Installing_GEANT4.9.3_Fsim]] |
| | | |
| + | == Saving/restoring Random number seed== |
| | | |
− | The low probability of having an atom with 10 eV of energy means that an ionization chamber would have a better Signal to Noise ratio (SNR) for detecting 10 eV radiation than a silicon detector
| + | You save the current state of the random number generator with the command |
| | | |
− | But if you cool the silicon detector to 200 degrees Kelvin (200 K) then
| + | /random/setSavingFlag 1 |
| | | |
− | <math>P(E=1 eV) = e^{-1/0.0172} \approx 10^{-26} 10^{-17}<< </math>
| + | /run/beamOn 100 |
| | | |
− | So cooling your detector will slow the atoms down making it more noticable when one of the atoms absorbs energy.
| + | /random/saveThisRun |
| | | |
− | also, if the radiation flux is large, more electron-hole pairs are created and you get a more noticeable signal.
| + | A file is created called |
| | | |
− | Unfortunately, with some detectore, like silicon, you can cause radiation damage that diminishes it's quantum efficiency for absorbing energy.
| + | currentEvent.rndm |
| | | |
− | === The Monte Carlo method ===
| + | /control/shell mv currentEvent.rndm currentEvent10.rndm |
− | ; Stochastic
| |
− | : from the greek word "stachos"
| |
− | : a means of, relating to, or characterized by conjecture and randomness.
| |
| | | |
| | | |
− | A stochastic process is one whose behavior is non-deterministic in that the next state of the process is partially determined.
| + | You can restore the random number generator and begin generating random number from the last save time |
| | | |
− | Physics has many such non-deterministic systems:
| + | /random/resetEngineFrom currentEvent.rndm |
| | | |
− | *Quantum Mechanics
| |
− | *Thermodynamics
| |
| | | |
| + | == Creating Template== |
| | | |
− | Basically the monte-carlo method uses a random number generator (RNG) to generate a distribution (gaussian, uniform, Poission,...) which is used to solve a stochastic process based on an astochastic description.
| + | [[TForest_G4_Template]] |
| | | |
| + | ==Building GEANT4.11== |
| | | |
− | ==== Example 2 Calculation of <math>\pi</math>==== | + | ===4.11.2=== |
| + | [[TF_GEANT4.11]] |
| | | |
− | ;Astochastic description:
| + | ==Building GEANT4.10== |
− | : <math>\pi</math> may be measured as the ratio of the area of a circle of radius <math>r</math> divided by the area of a square of length <math>2r</math>
| |
| | | |
− | [[Image:PI_from_AreaRatio.jpg]]<math>\frac{A_{circle}}{A_{square}} = \frac{\pi r^2}{4r^2} = \frac{\pi}{4}</math>
| |
| | | |
− | You can measure the value of <math>\pi</math> if you physically measure the above ratios.
| + | ===4.10.02=== |
| | | |
− | ; Stochastic description:
| + | [[TF_GEANT4.10.2]] |
− | : Construct a dart board representing the above geometry, throw several darts at it, and look at a ratio of the number of darts in the circle to the total number of darts thrown (assuming you always hit the dart board).
| + | ===4.10.01=== |
| | | |
− | ; Monte-Carlo Method
| + | [[TF_GEANT4.10.1]] |
− | :Here is an outline of a program to calulate <math>\pi</math> using the Monte-Carlo method with the above Stochastic description
| |
− | [[Image:MC_PI_fromAreaRatio.jpg]] | |
− | begin loop
| |
− | x=rnd
| |
− | y=rnd
| |
− | dist=sqrt(x*x+y*y)
| |
− | if dist <= 1.0 then numbCircHits+=1.0
| |
− | numbSquareHist += 1.0
| |
− | end loop
| |
− | print PI = 4*numbCircHits/numbSquareHits
| |
| | | |
− | === A Unix Primer === | + | ==Building GEANT4.9.6== |
− | To get our feet wet using the UNIX operating system, we will try to solve example 2 above using a RNG under UNIX
| |
| | | |
− | ==== List of important Commands====
| + | [[TF_GEANT4.9.6]] |
| | | |
− | # ls
| + | ==Building GEANT4.9.5== |
− | # pwd
| |
− | # cd
| |
− | # df
| |
− | # ssh
| |
− | # scp
| |
− | # mkdir
| |
− | # printenv
| |
− | # emacs, vi, vim
| |
− | # make, gcc
| |
− | # man
| |
− | # less
| |
− | # rm
| |
| | | |
− | ----
| + | [[TF_GEANT4.9.5]] |
− | Most of the commands executed within a shell under UNIX have command line arguments (switches) which tell the command to print information about using the command to the screen. The common forms of these switches are "-h", "--h", or "--help"
| |
| | | |
− | ls --help
| + | An old version of Installation notes for versions prior to 9.5 |
− | ssh -h
| |
| | | |
− | '' the switch deponds on your flavor of UNIX''
| + | [http://brems.iac.isu.edu/~tforest/NucSim/Day3/ Old Install Notes] |
| | | |
− | if using the switch doesn;t help you can try the "man" (sort for manual) pages (if they were installed).
| |
− | Try
| |
− | man -k pwd
| |
| | | |
− | the above command will search the manual for the key word "pwd"
| + | Visualization Libraries: |
| | | |
− | ==== Example 3: using UNIX ====
| + | [http://www.opengl.org/ OpenGL] |
| | | |
− | Step
| + | [http://geant4.kek.jp/~tanaka/DAWN/About_DAWN.html DAWN] |
− | # login to inca.<br> [http://physics.isu.edu/~tforest/Classes/NucSim/Day1/XwindowsOnWindows.html click here for a description of logging in if using windows]
| |
− | # mkdir src
| |
− | # cd src
| |
− | # cp -R ~tforest/NucSim/Day1 ./
| |
− | # ls
| |
− | # cd Day1
| |
− | # make
| |
− | #./rndtest
| |
| | | |
− | [http://physics.isu.edu/~tforest/Classes/NucSim/Day1/RNG/Marsaglia/noviceExample/ Here is a web link to the source files you can copy in case the above doesn't work]
| |
| | | |
− | === A Root Primer ===
| + | [http://doc.coin3d.org/Coin/ Coin3D] |
− | ==== Example 1: Create Ntuple and Draw Histogram====
| |
| | | |
− | === Cross Sections === | + | ==Compiling G4 with ROOT== |
− | ==== Definitions ====
| |
− | <math>\sigma(\theta)</math> = scattering cross-section <math>\equiv \frac{\frac{\# particles\; scattered}{solid \; angle}} {\frac{ \# incident \; particles}{Area}}</math>
| |
| | | |
− | ; Solid Angle
| + | These instruction describe how you can create a tree within ExN02SteppingVerbose to store tracking info in an array (max number of steps in a track is set to 100 for the desired particle) |
− | :[[Image:SolidAngleDefinition.jpg]]
| |
− | : <math>\Omega</math>= surface area of a sphere covered by the detector
| |
− | : ie;the detectors area projected onto the surface of a sphere
| |
− | :A= surface area of detector
| |
− | :r=distance from interaction point to detector
| |
− | :<math>\Omega = \frac{A}{r^2} </math>sterradians
| |
− | : <math>A_{sphere} = 4 \pi r^2</math> if your detector was a hollow ball
| |
− | :<math>\Omega_{max} = \frac{4 \pi r^2}{r^2} = 4\pi</math>sterradians
| |
| | | |
− | ;Units
| + | [[G4CompileWRootforTracks]] |
− | :Cross-sections have the units of Area
| |
− | :1 barn = <math>10^{-28} m^2</math>
| |
− | ; [units of <math>\sigma(\theta)</math>] =<math>\frac{\frac{[particles]}{[sterradian]}} {\frac{ [ particles]}{[m^2]}} = m^2</math>
| |
| | | |
| + | ==Using SLURM== |
| | | |
− | [[Image:FixedTargetScatteringCrossSection.jpg]]
| + | http://slurm.schedmd.com/quickstart.html |
− | ; Fixed target scattering
| |
− | : <math>N_{in}</math>= # of particles in = <math>I \cdot A_{in}</math>
| |
− | :: <math>A_{in}</math> is the area of the ring of incident particles
| |
− | :<math>dN_{in} = I \cdot dA = I (2\pi b) db</math>= # particles in a ring of radius <math>b</math> and thickness <math>db</math>
| |
| | | |
− | You can measure <math>\sigma(\theta)</math> if you measure the # of particles detected <math>d N</math> in a known detector solid angle <math>d \Omega</math> from a know incident particle Flux (<math>I</math>) as
| |
| | | |
− | <math>\sigma(\theta) = \frac{\frac{d N}{ d \Omega}}{I}</math>
| + | https://rc.fas.harvard.edu/resources/documentation/convenient-slurm-commands/ |
| | | |
− | Alternatively if you have a theory which tells you <math>\sigma(\theta)</math> which you want to test experimentally with a beam of flux <math>I</math> then you would measure counts (particles)
| + | ===simple batch script for one process job=== |
| | | |
− | <math>dN = I \sigma(\theta) d \Omega = I \sigma(\theta) \frac{d A}{r^2} = I \sigma(\theta) \frac{r^2 \sin(\theta) d \theta d \phi}{r^2}</math>
| + | create the file submit.sbatch below |
| | | |
− | ;Units
| + | <pre> |
− | : <math>[d N] = [\frac {particles}{m^2}][m^2] [sterradian] </math> = # of particles
| + | #!/bin/sh |
− | : or for a count rate divide both sides by time and you get beam current on the RHS
| + | #SBATCH --time=1 |
− | : integrate and you have the total number of counts
| + | cd src/PI |
| + | ./PI_MC 100000000000000 |
| + | </pre> |
| | | |
− | ;Classical Scattering
| + | the execute |
− | : In classical scattering you get the same number of particle out that you put in (no capture, conversion,..)
| |
− | : <math>d N_{in} = dN</math>
| |
− | :<math>d N_{in} = I dA = I (2\pi b) db</math>
| |
− | : <math>d N = I \sigma(\theta) d \Omega = I \sigma(\theta) \sin(\theta) d \theta d \phi = I \sigma(\theta) \sin(\theta) d \theta (2 \pi )</math>
| |
− | :<math> I (2\pi b) db = I \sigma(\theta) \sin(\theta) d \theta (2 \pi )</math>
| |
− | :<math> b db = \sigma(\theta) \sin(\theta) d \theta </math>
| |
− | :<math>\sigma(\theta) = \frac{b}{\sin(\theta)}\frac{db}{d \theta}</math>
| |
− | :<math>\frac{db}{d \theta}</math> tells you how the impact parameter <math>b</math> changes with scattering angle <math>\theta</math>
| |
| | | |
− | ==== Example : Elastic Scattering ====
| + | :sbatch submit.sbatch |
− | This example is an example of classical scattering.
| |
| | | |
− | Our goal is to find <math>\sigma(\theta)</math> for an elastic collision of 2 impenetrable spheres of diameter <math>a</math>. To solve this elastic scattering problem we will describe the collision in the Center of Mass (C.M.) frame. As we shall see, in the C.M. fram the 2-body collision becomes a 1-body problem.
| + | check if its running with |
| | | |
− | [[Image:SPIM_ElasCollis_Lab_CM_Frame.jpg]]
| + | :squeue |
| | | |
− | ; Variable definitions
| + | to kill a batch job |
− | :<math>b</math>= impact parameter ; distance of closest approach
| |
− | :<math>m_1</math>= mass of incoming ball
| |
− | :<math>m_2</math>= mass of target ball
| |
− | :<math>u_1</math>= iniital velocity of incoming ball in Lab Frame
| |
− | :<math>v_1</math>= final velocity of <math>m_1</math> in Lab Frame
| |
− | :<math>\psi_1</math>= scattering angle of <math>m_1</math> in lab frame after collision
| |
− | :<math>u_1^{\prime}</math>= iniital velocity of <math>m_1</math> in C.M. Frame
| |
− | :<math>v_1^{\prime}</math>= final velocity of <math>m_1</math> in C.M. Frame
| |
− | :<math>u_2^{\prime}</math>= iniital velocity of <math>m_2</math> in C.M. Frame
| |
− | :<math>v_2^{\prime}</math>= final velocity of <math>m_2</math> in C.M. Frame
| |
− | :<math>\theta</math>= scattering angle of <math>m_1</math> in C.M. frame after collision
| |
| | | |
| + | :scancel JOBID |
| | | |
− | We can reduct the 2-body problem to a 1-body problem using the following coordinates
| + | ===On minerve=== |
| | | |
− | [[Image:SPIM_2Body-1BodyCoordSystem.jpg]]
| + | Sample script to submit 10 batch jobs. |
| | | |
− | ; vector definitions
| + | the filename is minervesubmit and you run like |
− | :<math>\vec{r_1}</math> = a position vector pointing to the location of <math>m_1</math>
| + | source minervesubmit |
− | :<math>\vec{r_2}</math> = a position vector pointing to the location of <math>m_2</math>
| |
− | :<math>\vec{R}</math> = a position vector pointing to the center of mass of the two ball system
| |
− | :<math>\vec{r} \equiv \vec{r_1} - \vec{r_2}</math> = the magnitude of this vector is the distance between the two masses
| |
| | | |
− | In the C.M. reference frame the above vectors have the following relationships
| + | <pre> |
| + | cd /home/foretony/src/GEANT4/geant4.9.5/Simulations/N02wROOT/batch |
| + | qsub submit10mil |
| + | qsub submit20mil |
| + | qsub submit30mil |
| + | qsub submit40mil |
| + | qsub submit50mil |
| + | qsub submit60mil |
| + | qsub submit70mil |
| + | qsub submit80mil |
| + | qsub submit90mil |
| + | qsub submit100mil |
| + | </pre> |
| | | |
− | # <math>\vec{R} = 0 = \frac{m1 \vec{r_1} + m2 \vec{r_2}}{m_1 + m_2} \Rightarrow m_2 \vec{r_1} = -m_2 \vec{r_2}</math>
| + | The file submit10mil looks like this |
− | # <math>\vec{r_1} - \vec{r_2} = \vec{r}</math>
| + | <pre> |
| + | #!/bin/sh |
| + | #PBS -l nodes=1 |
| + | #PBS -A FIAC |
| + | #PBS -M foretony@isu.edu |
| + | #PBS -m abe |
| + | # |
| + | source /home/foretony/src/GEANT4/geant4.9.5/geant4.9.6-install/bin/geant4.sh |
| + | cd /home/foretony/src/GEANT4/geant4.9.5/Simulations/N02wROOT/batch/10mil |
| + | ../../exampleN02 run1.mac > /dev/null |
| + | </pre> |
| | | |
− | solving the above equations for <math>\vec{r_1}</math> and <math>\vec{r_2}</math> and defining the reduced mass <math>\mu</math> as
| |
| | | |
− | :<math>\mu = \frac{m_1 \cdot m_2}{m_1 + m_2} \equiv</math> reduced mass
| + | use |
| | | |
− | leads to
| + | qstat |
| | | |
− | : <math>\vec{r_1} = \frac{\mu}{m_1} \vec{r}</math>
| + | to check that the process is still running |
− | : <math>\vec{r_2} = \frac{\mu}{m_2} \vec{r}</math>
| |
| | | |
− | We can use the above relationships to construct a Hamilton in terms of <math>\vec{r}</math> instead of <math>\vec{r_1}</math> and <math> \vec{r_2}</math> thereby reducing the problem from a 2-body problem to a 1-body problem.
| + | use |
| | | |
− | ; Construct the Hamiltonian
| + | qdel jobID# |
| | | |
− | To construct the Hamiltonian for this problem we will start with the Lagrangian.
| + | if you want to kill the batch job, the jobID number shows up when you do stat. |
| | | |
| + | for example |
| + | <pre> |
| + | [foretony@minerve HW10]$ qstat |
| + | Job id Name User Time Use S Queue |
| + | ------------------------- ---------------- --------------- -------- - ----- |
| + | 27033.minerve submit foretony 00:41:55 R default |
| + | [foretony@minerve HW10]$ qdel 27033 |
| + | [foretony@minerve HW10]$ qstat |
| + | </pre> |
| | | |
− | <math>\mathcal{L} = T - U</math>
| + | ==Definitions of Materials== |
| | | |
− | where
| + | [[File:MCNP_Compendium_of_Material_Composition.pdf]] |
| | | |
− | <math>T \equiv</math> kinetic energy of the system
| + | ==Minerve2 GEANT 4.10.1 Xterm error== |
| | | |
− | <math>U \equiv</math> Potential energy of the system which describes the interaction
| |
| | | |
| + | On OS X El Capitan V 10.11.4 using XQuartz |
| | | |
− | <math>\mathcal{L} = \frac{1}{2} |\dot{\vec{r_1}}|^2 + \frac{1}{2} |\dot{\vec{r_2}}|^2 - U</math>
| + | ~/src/GEANT4/geant4.10.1/Simulations/B2/B2a/exsmpleB2a |
− | := <math>\frac{1}{2} m_1 \left (\frac{m_2}{m1+m_2} \right )^2 |\dot{\vec{r}}|^2 + \frac{1}{2} m_2 \left (\frac{m_1}{m1+m_2} \right )^2 |\dot{\vec{r}}|^2 -U(\vec{r})</math>
| |
| | | |
− | after substituting derivative of the expressions for <math>\vec{r_1}</math> and <math>\vec{r_2}</math>
| + | <pre> |
| | | |
− | : = <math>\frac{1}{2} \mu |\dot{\vec{r}}|^2 -U(\vec{r})</math> The 2-body problem is now described by a 1-body Lagrangian | + | # Use this open statement to create an OpenGL view: |
| + | /vis/open OGL 600x600-0+0 |
| + | /vis/sceneHandler/create OGL |
| + | /vis/viewer/create ! ! 600x600-0+0 |
| + | libGL error: failed to load driver: swrast |
| + | X Error of failed request: BadValue (integer parameter out of range for operation) |
| + | Major opcode of failed request: 150 (GLX) |
| + | Minor opcode of failed request: 3 (X_GLXCreateContext) |
| + | Value in failed request: 0x0 |
| + | Serial number of failed request: 25 |
| + | Current serial number in output stream: 26 |
| + | </pre> |
| | | |
− | Lagranges equations of motion are given by
| |
− | : <math>\frac{\partial \mathcal{L}}{\partial q} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\dot{q}}</math>
| |
− | where <math>q</math> represents on of the coordinate (cannonical variables).
| |
| | | |
− | To get the classical scattering cross section we are interested in finding an expression for the dependence of the impact parameter on the scattering angle,<math>\frac{d b}{d \theta}</math>. In this case <math>\theta</math> is the C.M. scattering angle so the cross section is calcuated in the C.M. reference Frame.
| |
| | | |
− | Now lets redraw the collision in terms of the reduced mass in the Lab frame.
| |
| | | |
− | [[Image:SPIM_ElasCollis_ReducedMass_CM_Frame_1.jpg]]
| |
| | | |
− | The C.M. Frame rides along the center of mass <math>\mu</math>. If <math>b > a</math> then there is no collision (<math>\theta=0</math>), otherwise a collision happens when r=a (the distance between the balls is equal to their diameter). A head on collision is defined as <math>b=0</math> (<math>\theta=\pi</math>).
| + | [[TF_SPIM_OLD]] |
− | | |
− | ;Observation
| |
− | : as <math>\theta</math> gets smaller, <math>b</math> gets bigger
| |
− | : <math>\frac{d b}{d \theta} < 0</math>
| |
− | | |
− | Using plane polar coordinates (<math>R, \phi</math>) we can describe the problem in the lab frame as:
| |
− | | |
− | <math>\vec{v} = \dot{R} \hat{e}_R + R \dot{\phi} \hat{e}_{\phi}</math>
| |
− | | |
− | <math>T = \frac{1}{2} \mu ( \dot{R}^2 + R^2 \dot{\phi}^2)</math>
| |
− | | |
− | | |
− | <math>U(R) = \left \{ {0 \; R > a \atop \infty \; R \le a} \right .</math>
| |
− | | |
− | <math>\mathcal{L} = T -U = \frac{1}{2} \mu ( \dot{R}^2 + R^2 \dot{\phi}^2) - U(R)</math>
| |
− | | |
− | Lagranges Equation of Motion:
| |
− | | |
− | <math>\frac{\partial \mathcal {L}}{\partial \phi} = \frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{\phi}}</math>
| |
− | <math>0 = \frac{d}{d t} [ \mu R^2 \dot{\phi}] \Rightarrow</math> there is a constant of motion ( Constant angular momentum)
| |
− | | |
− | <math>\ell \equiv \mu R^2 \dot{\phi} = \vec{R} \times \vec{p} = \vec{R} \times \mu \vec{v} = R^2 \mu \dot{\phi}</math>
| |
− | | |
− | substitute <math>\ell</math> into <math>\mathcal{L}</math>
| |
− | | |
− | <math>\mathcal{L} = \frac{1}{2} ( \mu \dot{R}^2 + \frac{\ell}{\mu R^2} ) - U(R)</math>
| |
− | | |
− | The two equations above are in terms of <math>R</math> and <math>\phi</math> whereas our goal is to find an expression for <math>\frac{ d b}{ d \theta}</math>. Since <math>R</math> is related to <math>b</math> and <math>\phi</math> is related to<math> \theta</math> (<math>\theta = \pi - 2\phi</math>; see figure above) we should try and find expressions for <math>d \phi</math> in terms of <math>R(b)</math>
| |
− | | |
− | ;Trick
| |
− | : <math>\dot{\phi} = \frac{d \phi}{d t} = \frac{d \phi}{d R} \frac{d R}{d t}</math>
| |
− | :<math>\Rightarrow \ell = \mu R^2 \frac{d \phi}{d R} \dot{R}</math>
| |
− | :or
| |
− | : <math>d \phi = \frac{\ell}{\mu R^2 \dot{R}} dR</math>
| |
− | | |
− | We now need an expression for <math>\dot{R}</math> in order to integrate the above equation to determine the functional dependence of <math>\phi</math> and hence<math> \theta</math>.
| |
− | | |
− | Since Energy is conserved (Elastic Scattering), we may define the Hamiltonian as
| |
− | | |
− | <math>H = T + U = \frac{1}{2} (mu \dot{R}^2 + \frac{\ell}{\mu R^2}) + U(R) = constant \equiv E</math>
| |
− | | |
− | solving for <math>\dot{R}</math>
| |
− | | |
− | <math>\dot{R} = \pm \sqrt{\frac{2(E-U(R))}{\mu} - \frac{\ell^2}{\mu^2 R^2}}</math>
| |
− | | |
− | substituting the above into the equation for <math>d \phi</math> and integrating:
| |
− | | |
− | <math>\phi = \int d \phi = \int_{r_{min}}^{r_{max}} \frac{\ell}{\mu R^2 \dot{R}} dR</math>
| |
− | | |
− | <math>r_{min} = a \; \; \; r_{max}= \infty \; \; \; U(R) = 0 : a \le R \le \infty</math>
| |
− | | |
− | <math>\phi = \int_a^{\infty} \frac{\ell} {R^2 \sqrt{2 \mu E - \frac{\ell^2}{R^2}} }dR</math>
| |
− | | |
− | For <math>a \le R \le \infty</math> : <math>E = \frac{1}{2} \mu v^2_{cm} \Rightarrow v_{cm} = \sqrt{\frac{2E}{\mu}}</math>
| |
− | | |
− | <math>\vec{\ell} = \vec{R} \times \vec{p} \Rightarrow |\vec{\ell}| = |\vec{R}| |\vec{p}| \sin(\phi) = R \mu v_{cm} \sin(\phi) = R \mu \left ( \sqrt{\frac{2E}{\mu}} \right) \sin(\phi) = \sqrt{2 \mu E} R\sin(\phi) =\sqrt{2 \mu E} b</math>
| |
− | | |
− | substituting this expression for \ell into the last expression for \phi above :
| |
− | | |
− | <math>\phi =\int_a^{\infty} \frac{b dR}{R\sqrt{(R^2-b^2)}}</math>
| |
− | | |
− | ;Integral Table
| |
− | : <math>\int \frac{dx}{x\sqrt{(\alpha x^2+\beta x+\gamma)}} = \frac{-1}{\sqrt{-\gamma}} \sin^{-1} \left (\frac{\beta x+2\gamma}{|x|\sqrt{\beta^2-4\alpha \gamma}} \right )</math>
| |
− | | |
− | let <math>x=R \;\; \alpha=1 \;\; \beta=0 \;\; \gamma=-b^2</math>
| |
− | | |
− | then
| |
− | | |
− | <math>\phi = \left . b \frac{1}{\sqrt{-(-b^2)}} \sin^{-1} \left (\frac{-2b^2}{R\sqrt{0-4(1)(-b^2) } }\right ) \right |_a^{\infty} = \sin^{-1} (0)- \sin^{-1}(-\frac{b}{a})</math>
| |
− | | |
− | or
| |
− | <math>\sin(\phi) = \frac{b}{a} = \sin \left ( \frac{\pi}{2} - \frac{\theta}{2} \right ) = \cos \left ( \frac{\theta}{2} \right )</math>
| |
− | | |
− | <math>\Rightarrow b = a \cos \left( \frac{\theta}{2} \right)</math>
| |
− | | |
− | ==== Lab Frame Cross Sections ====
| |
− | | |
− | == Stopping Power ==
| |
− | === Bethe Equation ===
| |
− | ====Classical Energy Loss ====
| |
− | ====Bethe-Bloch Equation ====
| |
− | === Energy Straggling ===
| |
− | ==== Thick Absorber ====
| |
− | ====Thin Absorbers====
| |
− | === Range Straggling===
| |
− | === Electron Capture and Loss ===
| |
− | === Multiple Scattering ===
| |
− | | |
− | == Interactions of Electrons and Photons with Matter==
| |
− | === Bremsstrahlung===
| |
− | === Photo-electric effect===
| |
− | === Compton Scattering ===
| |
− | === Pair Production ===
| |
− | | |
− | == Hadronic Interactions ==
| |
− | === Neutron Interactions ===
| |
− | ==== Elastic scattering====
| |
− | | |
− | ==== Inelasstic Scattering====
| |