Difference between revisions of "Flux of Incoming Particles"
(54 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | <center><math>\underline{\textbf{Navigation}}</math> | |
− | < | + | |
+ | [[Mandelstam_Representation|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | ||
+ | [[T-Channel|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> | ||
− | + | =Classically= | |
Working with a beam of electrons, we can define a pulse as n charges per unit volume, each carrying charge q and moving with speed <math>v_d</math>. Defining <math>v_d</math> to be the time-average speed of the electrons, we can find the number of particles within a beam. If A is the beam cross-sectional area, then l, the length of the pulse , has a volume Al with nAl charges within its bounds. Since each electron carries charge q, the total charge is | Working with a beam of electrons, we can define a pulse as n charges per unit volume, each carrying charge q and moving with speed <math>v_d</math>. Defining <math>v_d</math> to be the time-average speed of the electrons, we can find the number of particles within a beam. If A is the beam cross-sectional area, then l, the length of the pulse , has a volume Al with nAl charges within its bounds. Since each electron carries charge q, the total charge is | ||
+ | |||
+ | <center>[[File:Pulse.png | 500px]]</center> | ||
− | |||
+ | <center><math>Q\equiv nlqA </math></center> | ||
− | |||
− | |||
+ | Defining the charge density as | ||
+ | <center><math>\rho \equiv \frac{Q}{V}=nlq\frac{A}{V}</math></center> | ||
− | |||
− | <center><math> | + | The time it takes the pulse to move past a given point |
+ | <center><math> t=\frac{l}{v_d}</math></center> | ||
− | |||
+ | The total current is | ||
− | + | <center><math>I=\frac{Q}{t}=\frac{nAlq}{\frac{l}{v_d}}=nAqv_d</math></center> | |
− | |||
Line 40: | Line 46: | ||
Beam Power =<math>\le 5000W\ (450A\ at\ 11GeV)</math> | Beam Power =<math>\le 5000W\ (450A\ at\ 11GeV)</math> | ||
− | + | =Relativistic Quantum Mechanics= | |
− | |||
<center><math>E^2 \equiv p^2+m^2</math></center> | <center><math>E^2 \equiv p^2+m^2</math></center> | ||
Line 48: | Line 53: | ||
Using the operator relations | Using the operator relations | ||
− | <center><math>\widehat{E}=i\hbar \frac{\partial}{\partial t} \qquad \vec {\widehat{p}} | + | <center><math>\widehat{E}=i\hbar \frac{\partial}{\partial t} \qquad \widehat{ \vec{p}}=i\hbar \nabla</math></center> |
+ | |||
+ | |||
+ | <center><math>\widehat{E}^2 \equiv \widehat{ \vec{p}}\ ^2+m^2\Rightarrow (i\hbar \frac{\partial}{\partial t})^2 \equiv (i\hbar \widehat{\vec{\nabla}})^2+m^2</math></center> | ||
+ | |||
+ | Working with <math>\hbar=c=1</math> | ||
− | <center><math>\widehat{E}^2 \equiv \ | + | <center><math>\widehat{E}^2 \equiv \widehat{ \vec{p}}\ ^2+m^2\Rightarrow - \frac{\partial^2}{\partial t^2} \equiv (-\widehat{\vec{\nabla}})^2+m^2</math></center> |
− | + | Having this equation operate on a particle's wave function, we can obtain the relativistic Schrödinger equation, also known as the Klein-Gordon equation. | |
<center><math>-\frac{\partial^2 \phi}{\partial t^2}+\nabla^2 \phi=m^2 \phi</math></center> | <center><math>-\frac{\partial^2 \phi}{\partial t^2}+\nabla^2 \phi=m^2 \phi</math></center> | ||
− | <center><math>\frac{\partial}{\partial t}\left [i \left (\phi^*\frac{\partial \phi}{\partial t}-\phi \frac{\partial \phi^*}{\partial t} \right ) \right ]+\vec \nabla \cdot \left [-i\left (\phi^*\vec \nabla \phi-\phi \vec \nabla \phi^* \right ) \right ]=0</math></center> | + | |
+ | <center><math>\frac{\partial^2 \phi}{\partial t^2}-\nabla^2 \phi+m^2=0 </math></center> | ||
+ | |||
+ | |||
+ | Letting <math>\Box \equiv \frac{\partial^2}{\partial t^2}-\nabla^2</math> | ||
+ | |||
+ | The Klein-Gordon equation can be written as | ||
+ | |||
+ | |||
+ | <center><math>(\Box+m^2)\phi =0</math></center> | ||
+ | |||
+ | |||
+ | Multiplying by the complex conjugate | ||
+ | |||
+ | |||
+ | <center><math>\phi^*(\Box+m^2)\phi =0 \qquad \phi(\Box+m^2)\phi^* =0</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | Subtracting | ||
+ | |||
+ | <center><math>\phi^*(\Box+m^2)\phi - \phi(\Box+m^2)\phi^* =0</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\phi^*\Box \phi - \phi\Box \phi^* =0</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <center><math>\phi^* (\frac{\partial^2}{\partial t^2}-\nabla^2) \phi - \phi( \frac{\partial^2}{\partial t^2}-\nabla^2) \phi^* =0</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\phi^* \frac{\partial^2}{\partial t^2} \phi-\phi^*\nabla^2 \phi - \phi \frac{\partial^2}{\partial t^2}\phi^*+\phi \nabla^2 \phi^* =0</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>(\phi^* \frac{\partial^2}{\partial t^2} \phi- \phi \frac{\partial^2}{\partial t^2}\phi^*)-(\phi^*\nabla^2 \phi -\phi \nabla^2 \phi^*) =0</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\frac{\partial}{\partial t} \underbrace{ \left [i \left (\phi^*\frac{\partial \phi}{\partial t}-\phi \frac{\partial \phi^*}{\partial t} \right ) \right ] }_{\rho}+\vec \nabla \cdot \underbrace{ \left [-i\left (\phi^*\vec \nabla \phi-\phi \vec \nabla \phi^* \right ) \right ] }_{\vec j}=0</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | From the conservation of probabilty, we know that | ||
+ | |||
+ | |||
+ | <center><math>-\frac{\partial}{\partial t}\int_V \rho dV=\int_S \vec{j} \cdot \hat{n} dS=\int_V \vec{\nabla} \cdot \vec{j} dV</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\frac{\partial \rho}{\partial t}=\vec{\nabla} \cdot \vec{j}=0</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | This can be written in the form | ||
+ | |||
+ | <center><math>\frac{\partial }{\partial t}\rho=\vec{\nabla} \cdot \vec{j}=0</math></center> | ||
+ | |||
+ | |||
+ | where | ||
<center><math>\phi=Ne^{i\vec p \cdot \vec x -iEt}</math></center> | <center><math>\phi=Ne^{i\vec p \cdot \vec x -iEt}</math></center> | ||
+ | This gives | ||
− | <center><math>\rho=i(-2iE)|N|^2=2E|N|^2</math></center> | + | <center><math>\vec j=-i \left (\phi^* \nabla \phi -\phi \nabla \phi^* \right )</math></center> |
+ | |||
+ | |||
+ | <center><math>\vec j=-i \left (Ne^{-i\vec p \cdot \vec x +iEt} \frac{\partial}{\partial z} Ne^{i\vec p \cdot \vec x -iEt}-Ne^{i\vec p \cdot \vec x -iEt}\frac{\partial}{\partial z}Ne^{-i\vec p \cdot \vec x +iEt} \right )</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\vec j=-i \left (Ne^{-i\vec p \cdot \vec x +iEt}i\vec p Ne^{i\vec p \cdot \vec x -iEt}+Ne^{i\vec p \cdot \vec x -iEt}i\vec pNe^{-i\vec p \cdot \vec x +iEt} \right )</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\vec j \equiv -i(2i\vec p)N^2=N^2 2p</math></center> | ||
+ | |||
+ | |||
+ | and | ||
+ | |||
+ | <center><math>\rho=i \left (\phi^* \frac{\partial}{\partial t}\phi-\phi \frac{\partial }{\partial t}\phi^* \right )</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\rho=i \left (Ne^{-i\vec p \cdot \vec x +iEt} \frac{\partial}{\partial t}Ne^{i\vec p \cdot \vec x -iEt}-Ne^{i\vec p \cdot \vec x -iEt} \frac{\partial }{\partial t}Ne^{-i\vec p \cdot \vec x +iEt} \right )</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\rho=i \left (-Ne^{-i\vec p \cdot \vec x +iEt}iENe^{i\vec p \cdot \vec x -iEt}-Ne^{i\vec p \cdot \vec x -iEt} iENe^{-i\vec p \cdot \vec x +iEt} \right )</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\rho \equiv i(-2iE)|N|^2=2E|N|^2</math></center> | ||
− | |||
Line 169: | Line 271: | ||
<center><math>F_{cms}=4 \sqrt {\vec p_1^*\,^2s}</math></center> | <center><math>F_{cms}=4 \sqrt {\vec p_1^*\,^2s}</math></center> | ||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | |||
+ | <center><math>\underline{\textbf{Navigation}}</math> | ||
+ | |||
+ | [[Mandelstam_Representation|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | ||
+ | [[T-Channel|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> |
Latest revision as of 20:32, 29 December 2018
Classically
Working with a beam of electrons, we can define a pulse as n charges per unit volume, each carrying charge q and moving with speed
. Defining to be the time-average speed of the electrons, we can find the number of particles within a beam. If A is the beam cross-sectional area, then l, the length of the pulse , has a volume Al with nAl charges within its bounds. Since each electron carries charge q, the total charge is
Defining the charge density as
The time it takes the pulse to move past a given point
The total current is
The current density
where is the drift velocity.
Beam Power =
Relativistic Quantum Mechanics
Using the operator relations
Working with
Having this equation operate on a particle's wave function, we can obtain the relativistic Schrödinger equation, also known as the Klein-Gordon equation.
Letting
The Klein-Gordon equation can be written as
Multiplying by the complex conjugate
Subtracting
From the conservation of probabilty, we know that
This can be written in the form
where
This gives
and
The number of particles in a beam passing through a unit area per unit time is
The number of stationary target particles per unit volume is
where is the relative velocity between the particles in the frame where particle 1 is at rest
Using the relativistic definition of energy
Letting be the energy of particle 2 wiith respect to particle 1, the relativistic energy equation can be rewritten such that
where similarly
is defined as the momentum of particle 2 with respect to particle 1.
The relative velocity can be expressed as
The invariant form of F is
where in the center of mass frame
and
As shown earlier