Difference between revisions of "Relativistic Differential Cross-section"
Jump to navigation
Jump to search
(20 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | <center><math>\underline{\textbf{Navigation}}</math></center> | ||
+ | |||
+ | <center> | ||
+ | [[Lorentz_Transformation_to_Lab_Frame|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]] | ||
+ | [[CED_Verification_of_DC_Angle_Theta_and_Wire_Correspondance|<math>\vartriangleright </math>]] | ||
+ | </center> | ||
+ | |||
=Relativistic Differential Cross-section= | =Relativistic Differential Cross-section= | ||
Line 6: | Line 14: | ||
− | <center><math>dQ=(2\pi)^4\delta^4(\vec | + | <center><math>dQ=(2\pi)^4\delta^4 \left(\vec p_{1} +\vec p_{2} - \vec p_{1}^{'} -\vec p_{2}^{'} \right)\frac{d^3 \vec p_{1}^{'}}{(2\pi)^3 2E_{1}^{'}}\frac{d^3 \vec p_{2}^{'}}{(2\pi)^3 2E_{2}^{'}}</math></center> |
Line 12: | Line 20: | ||
− | |||
− | |||
+ | <center><math>F_{cms}=4 \vec p_{1}^{*}\sqrt {s}</math></center> | ||
− | |||
− | + | <center><math>d\sigma=\frac{1}{4 \vec p_{1}\,^{*}\sqrt {s}}|\mathcal{M}|^2 dQ</math></center> | |
− | |||
+ | <center><math>d^3 \vec p_{1}^{'}=\vec p^{'3}_{1} d \vec p^{'} d\Omega</math></center> | ||
− | <center><math>\ | + | |
+ | <center><math>(E_{1}^{'})^2=(\vec p_{1}^{'})^2+(m_{1})^{2}</math></center> | ||
− | + | <center><math>E_{1}^{'} d E_{1}^{'}= \vec p_{1}^{'} d \vec p_{1}^{'}</math></center> | |
− | |||
− | + | <center><math>dQ=\frac{1}{(4\pi)^2}\delta (E_{1}+E_{2}-E_{1}^{'}-E_{2}^{'})\frac{\vec p_{1}^{'}dE_{1}^{'}}{E_{2}^{'}}d\Omega</math><\center> | |
+ | <center><math>W_{i} \equiv E_{1}+E_{2} \qquad \qquad W_f \equiv E_{1}^{'}+E_{2}^{'}</math></center> | ||
− | |||
+ | <center><math>dW_f=dE_{1}^{'}+dE_{2}^{'}=\frac{\vec p_{1}^{'} d \vec p_{1}^{'}}{E_{1}^{'}}+\frac{p_{2}^{'} dp_{2}^{'}}{E_{2}^{'}}</math></center> | ||
− | |||
+ | In the center of mass frame | ||
+ | <center><math>|\vec p_{1}^{'}|=|\vec p_{2}^{'}|=|\vec p_{f}^{'}| \rightarrow |\vec p_{1}^{'} d \vec p_{1}^{'}|=|\vec p_{2}^{'} d \vec p_{2}^{'}|=|\vec p_{f}^{'} d \vec p_{f}^{'}|</math></center> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | <center><math>dW_{f}=\frac{W_{f}}{E_{2}^{'}}dE_{1}^{'}</math></center> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | <center><math>dQ_{cms}=\frac{1}{(4\pi)^2}\delta (W_i-W_f)\frac{\vec p_{f} dW_{f}}{W_{f}}d\Omega</math></center> | ||
− | |||
+ | <center><math>dQ_{cms}=\frac{1}{(4\pi)^2}\frac{\vec p_{f}}{\sqrt {s}}d\Omega</math></center> | ||
− | <center><math> | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_{f}}{\mathbf p_{i}}|\mathcal {M}|^2</math></center> |
− | + | ---- | |
+ | <center><math>\underline{\textbf{Navigation}}</math></center> | ||
− | <center><math>\ | + | <center> |
+ | [[Lorentz_Transformation_to_Lab_Frame|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]] | ||
+ | [[CED_Verification_of_DC_Angle_Theta_and_Wire_Correspondance|<math>\vartriangleright </math>]] | ||
+ | </center> |