Difference between revisions of "Scattering Amplitude"
Jump to navigation
Jump to search
(12 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | <center><math>\underline{\textbf{Navigation}}</math></center> | ||
+ | |||
+ | <center> | ||
+ | [[Lorentz_Transformation_to_Lab_Frame|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]] | ||
+ | [[CED_Verification_of_DC_Angle_Theta_and_Wire_Correspondance|<math>\vartriangleright </math>]] | ||
+ | </center> | ||
+ | |||
+ | |||
=Scattering Amplitude= | =Scattering Amplitude= | ||
− | In the Møller scattering ( | + | In the Møller scattering <math>(\mathbf P_{1} + \mathbf P_{2} \rightarrow \mathbf P_{1}^{'} + \mathbf P_{2}^{'})</math> we have identical particles in the initial and final states. This that the amplitude to be symmetric under interchange of particles <math>(\mathbf P_{1}^{'} \leftrightarrow \mathbf P_{2}^{'} </math> or <math> \mathbf P_{1} \leftrightarrow \mathbf P_{2})</math>. Due to this symmetry we can determine two 1st level Feynman diagrams to describe this scattering. |
<center>[[File:Feynman1stLevel.png | 600 px]]</center> | <center>[[File:Feynman1stLevel.png | 600 px]]</center> | ||
− | + | The amplitudes of the individual Feynman diagrams add linearly to form the total amplitude | |
− | <center><math>\mathfrak{M}=\mathfrak{M} | + | <center><math>\mathfrak{M}=\mathfrak{M}_{1}+\mathfrak{M}_{2}</math></center> |
Line 17: | Line 26: | ||
<center><math>q \equiv \mathbf p_{final}-\mathbf p_{initial}</math></center> | <center><math>q \equiv \mathbf p_{final}-\mathbf p_{initial}</math></center> | ||
+ | and <math>g_{\mu \nu}</math> is the Mandelstam metric which allows the transformation from the contravariant to covariant form needed for tensor multiplication. Examining both Feynman diagrams seperately, we find for their individual amplitudes | ||
− | |||
+ | <center><math>-i \mathfrak{M}_{1}=ie\left(\mathbf p_{1}+\mathbf p_{1}^{'}\right)^{\mu} \left(\frac{-ig_{\mu \nu}}{q^{2}} \right) ie \left( \mathbf p_{2}+\mathbf p_{2}^{'}\right)^{\nu} \qquad \qquad -i \mathfrak{M}_{2}=ie\left(\mathbf p_{1}+\mathbf p_{2}^{'}\right)^{\mu} \left(\frac{-ig_{\mu \nu}}{q^2} \right) ie \left( \mathbf p_{2}+\mathbf p_{1}^{'}\right)^{\nu}</math></center> | ||
− | |||
+ | <center><math>-i \mathfrak{M}_1=ie(\mathbf p_{1}+\mathbf p_{1}^{'})^{\mu} \left (\frac{-ig_{\mu \nu}}{(\mathbf p_{2}^{'}-\mathbf p_{2})^{2}} \right ) ie( \mathbf p_{2}+\mathbf p_{2}^{'})^{\nu} \qquad \qquad -i \mathfrak{M}_{2}=ie(\mathbf p_{1}+\mathbf p_{2}^{'})^{\mu} \left (\frac{-ig_{\mu \nu}}{(\mathbf p_{1}^{'}-\mathbf p_{2})^{2}} \right ) ie( \mathbf p_{2}+\mathbf p_{1}^{'})^{\nu}</math></center> | ||
− | <center><math>-i \mathfrak{M} | + | |
+ | <center><math>-i \mathfrak{M}_{1}=ie^{2}\left (\frac{\left(\mathbf p_{1}+\mathbf p_{1}^{'}\right)_{\mu} \left(\mathbf p_{2}+\mathbf p_{2}^{'}\right)^{\mu}}{\left(\mathbf p_{2}^{'}-\mathbf p_{2}\right)^{2}} \right ) \qquad \qquad -i \mathfrak{M}_{2}=ie^{2}\left (\frac{\left(\mathbf p_{1}+\mathbf p_{2}^{'}\right)_{\mu} \left(\mathbf p_{2}+\mathbf p_{1}^{'}\right)^{\mu}}{\left(\mathbf p_{1}^{'}-\mathbf p_{2}\right)^{2}} \right ) </math></center> | ||
Line 66: | Line 77: | ||
<center><math>\mathfrak{M}_{e^-e^-}=e^2 \left (\frac{u-s}{t}+\frac{t-s}{u} \right )</math></center> | <center><math>\mathfrak{M}_{e^-e^-}=e^2 \left (\frac{u-s}{t}+\frac{t-s}{u} \right )</math></center> | ||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | <center><math>\underline{\textbf{Navigation}}</math></center> | ||
+ | |||
+ | <center> | ||
+ | [[Lorentz_Transformation_to_Lab_Frame|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]] | ||
+ | [[CED_Verification_of_DC_Angle_Theta_and_Wire_Correspondance|<math>\vartriangleright </math>]] | ||
+ | </center> |
Latest revision as of 21:12, 29 December 2018
Scattering Amplitude
In the Møller scattering
we have identical particles in the initial and final states. This that the amplitude to be symmetric under interchange of particles or . Due to this symmetry we can determine two 1st level Feynman diagrams to describe this scattering.The amplitudes of the individual Feynman diagrams add linearly to form the total amplitude
Using the Feynman rules, each vertex contribute a factor
and the propagator gives
where q is the momentum of the photon
and
is the Mandelstam metric which allows the transformation from the contravariant to covariant form needed for tensor multiplication. Examining both Feynman diagrams seperately, we find for their individual amplitudes
Without loss of generality, we can extend this to the center of mass frame
Using the fact that