Difference between revisions of "Differential Cross-Section"

From New IAC Wiki
Jump to navigation Jump to search
 
(189 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
<center><math>\underline{\textbf{Navigation}}</math></center>
 +
 +
<center>
 +
[[Lorentz_Transformation_to_Lab_Frame|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]]
 +
[[CED_Verification_of_DC_Angle_Theta_and_Wire_Correspondance|<math>\vartriangleright </math>]]
 +
</center>
 +
 +
=Differential Cross-Section=
 +
 
<center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi ^2 s}\frac{\mathbf p_{final}}{\mathbf p_{initial}} |\mathfrak{M} |^2</math></center>
 
<center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi ^2 s}\frac{\mathbf p_{final}}{\mathbf p_{initial}} |\mathfrak{M} |^2</math></center>
 +
 +
 +
Working in the center of mass frame
 +
 +
<center><math>\mathbf p_{final}=\mathbf p_{initial}</math></center>
 +
 +
 +
Determining the scattering amplitude in the center of mass frame
  
  
Line 17: Line 35:
  
  
<center><math>\mathfrak{M}^2=e^4 \left ( \frac{(t^2+s^2)}{u^2}-\frac{2s^2}{tu}+\frac{(u^2+s^2)}{t^2}\right )</math></center>
+
<center><math>\mathfrak{M}^2=e^4 \left ( \frac{(t^2+s^2)}{u^2}+\frac{2s^2}{tu}+2-\frac{2us}{t^2}-\frac{2s}{t}-\frac{2ts}{u^2}-\frac{2s}{u}+\frac{(u^2+s^2)}{t^2}\right )</math></center>
  
  
  
Using the fine structure constant
+
Using the fine structure constant (<math>with\ c=\hbar=\epsilon_0=1</math>)
 
<center><math>\alpha \equiv \frac{e^2}{4\pi}</math></center>
 
<center><math>\alpha \equiv \frac{e^2}{4\pi}</math></center>
  
  
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{2s}\left ( \frac{(t^2+s^2)}{u^2}-\frac{2s^2}{tu}+\frac{(u^2+s^2)}{t^2}\right )</math></center>
+
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4s}\left ( \frac{(t^2+s^2)}{u^2}+\frac{2s^2}{tu}+2-\frac{2us}{t^2}-\frac{2s}{t}-\frac{2ts}{u^2}-\frac{2s}{u}+\frac{(u^2+s^2)}{t^2}\right )</math></center>
  
  
Line 33: Line 51:
  
  
<center><math>t \equiv -2E^{*2}(1-\cos{\theta})=-2E^{*2}(1-2\cos^2{\frac{\theta}{2}}+1)=-4E^{*2}((1-2\cos^2{\frac{\theta}{2}})=-4E^{*2}\sin^2{\frac{\theta}{2}}</math></center>
+
 
 +
<center><math>t \equiv -2p^{*2}(1-\cos{\theta})</math></center>
 +
 
 +
 
 +
 
 +
 
 +
<center><math>u \equiv -2p^{*2}(1+\cos{\theta})</math></center>
 +
 
 +
 
 +
Calculating the parts to have common denominators:
 +
 
 +
<center><math>\left(1\right)\qquad \qquad 2=\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}=\frac{2p^{*4}\left(1-\cos^2{\theta}\right)^2}{p^{*4}\sin^4{\theta}}=\frac{2p^{*4}\left(1-2\cos^2{\theta}+\cos^4{\theta}\right)}{p^{*4}\sin^4{\theta}}</math></center>
 +
 
 +
 
 +
 
 +
<center><math>\left(2\right)\qquad \qquad \frac{2s^2}{tu}=\frac{32E^{*4}}{4p^{*4}\left(1+\cos{\theta}\right)\left(1-\cos{\theta}\right)}=\frac{8E^{*4}}{p^{*4}\sin^2{\theta}}=\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4}=\frac{8E^{*4}\left(1-\cos^2{\theta}\right)}{p^{*4}\sin^4{\theta}}</math></center>
 +
 
 +
 
 +
 
 +
<center><math>\left(3\right)\qquad \qquad \frac{t^2}{u^2}=\frac{4p^{*2}\left(1-\cos{\theta}\right)^2}{4p^{*2}\left(1+\cos{\theta}\right)^2}=\tan^4{\frac{\theta}{2}}=\frac{p^{*4}\left(1-\cos{\theta}\right)^4}{p^{*4}\sin^4{\theta}}=\frac{p^{*4}\left(\cos^4{\theta}-4\cos^3{\theta}+6\cos^2{\theta}-4\cos{\theta}+1\right)}{p^{*4}\sin^4{\theta}}</math></center>
 +
 
 +
 
 +
<center><math>\left(4\right)\qquad \qquad \frac{u^2}{t^2}=\frac{4p^{*2}\left(1+\cos{\theta}\right)^2}{4p^{*2}\left(1-\cos{\theta}\right)^2}=\cot^4{\frac{\theta}{2}}=\frac{p^{*4}\left(1+\cos{\theta}\right)^4}{p^{*4}\sin^4{\theta}}=\frac{p^{*4}\left(\cos^4{\theta}+4\cos^3{\theta}+6\cos^2{\theta}+4\cos{\theta}+1\right)}{p^{*4}\sin^4{\theta}}</math></center>
 +
 
 +
 
 +
 
 +
<center><math>\left(5\right)\qquad \qquad \frac{s^2}{u^2}=\frac{16E^{*4}}{4p^{*4}\left(1+\cos{\theta}\right)^2}=\frac{E^{*4}\sec^4{\frac{\theta}{2}}}{p^{*4}}=\frac{4E^{*4}}{p^{*4}\left(1+\cos{\theta}\right)^2}=\frac{4E^{*4}\left(1-\cos{\theta}\right)^2}{p^{*4}\left(1+\cos{\theta}\right)^2\left(1-\cos{\theta}\right)^2}=\frac{4E^{*4}\left(\cos^2{\theta}-2\cos{\theta}+1\right)}{p^{*4}\sin^4{\theta}}</math></center>
 +
 
 +
 
 +
 
 +
<center><math>\left(6\right)\qquad \qquad \frac{s^2}{t^2}=\frac{16E^{*4}}{4p^{*4}\left(1-\cos{\theta}\right)^2}=\frac{E^{*4}\csc^4{\frac{\theta}{2}}}{p^{*4}}=\frac{4E^{*4}}{p^{*4}\left(1-\cos{\theta}\right)^2}=\frac{4E^{*4}\left(1+\cos{\theta}\right)^2}{p^{*4}\left(1-\cos{\theta}\right)^2\left(1+\cos{\theta}\right)^2}=\frac{4E^{*4}\left(\cos^2{\theta}+2\cos{\theta}+1\right)}{p^{*4}\sin^4{\theta}}</math></center>
 +
 
 +
 
 +
 
 +
 
 +
<center><math>\left(7\right)\qquad \qquad \frac{-2s}{t}=\frac{8E^{*2}}{2p^{*2}\left(1-\cos{\theta}\right)}=\frac{4E^{*2}}{p^{*2}\left(1-\cos{\theta}\right)}=\frac{4E^{*2}\left(1+\cos{\theta}\right)}{p^{*2}\left(1-\cos{\theta}\right)\left(1+\cos{\theta}\right)}=\frac{4E^{*2}\left(1+\cos{\theta}\right)}{p^{*2}\sin^2{\theta}}=\frac{4E^{*2}p^{*2}sin^2{\theta}\left(1+\cos{\theta}\right)}{p^{*4}sin^4{\theta}}=\frac{4E^{*2}p^{*2}\left(1-cos^2{\theta}\right)\left(1+\cos{\theta}\right)}{p^{*4}sin^4{\theta}}=\frac{4E^{*2}p^{*2}\left(1+\cos{\theta}-\cos^2{\theta}-\cos^3{\theta}\right)}{p^{*4}sin^4{\theta}}</math></center>
 +
 
 +
 
 +
 
 +
<center><math>\left(8\right)\qquad \qquad \frac{-2s}{u}=\frac{8E^{*2}}{2p^{*2}\left(1+\cos{\theta}\right)}=\frac{4E^{*2}}{p^{*2}\left(1+\cos{\theta}\right)}=\frac{4E^{*2}\left(1-\cos{\theta}\right)}{p^{*2}\left(1+\cos{\theta}\right)\left(1-\cos{\theta}\right)}=\frac{4E^{*2}\left(1-\cos{\theta}\right)}{p^{*2}sin^2{\theta}}=\frac{4E^{*2}p^{*2}sin^2{\theta}\left(1-\cos{\theta}\right)}{p^{*4}sin^4{\theta}}=\frac{4E^{*2}p^{*2}\left(1-cos^2{\theta}\right)\left(1-\cos{\theta}\right)}{p^{*4}sin^4{\theta}}=\frac{4E^{*2}p^{*2}\left(1-\cos{\theta}-\cos^2{\theta}+\cos^3{\theta}\right)}{p^{*4}sin^4{\theta}}</math></center>
 +
 
 +
 
 +
 
 +
<center><math>\left(9\right)\qquad \qquad \frac{-2ts}{u^2}=\frac{4p^{*2}\left(1-\cos{\theta}\right)4E^{*2}}{4p^{*2}\left(1+\cos{\theta}\right)^2}=\frac{4E^{*2}\left(1-\cos{\theta}\right)\sec^4{\frac{\theta}{2}}}{p^{*2}}=\frac{4E^{*2}p^{*2}\left(1-\cos{\theta}\right)}{p^{*4}\left(1+\cos{\theta}\right)^2}=\frac{4E^{*2}p^{*2}\left(1-\cos{\theta}\right)\left(1-\cos{\theta}\right)^2}{p^{*4}\left(1+\cos{\theta}\right)^2\left(1-\cos{\theta}\right)^2}=\frac{4E^{*2}p^{*2}\left(-\cos^3{\theta}+3\cos^2{\theta}-3\cos{\theta}+1\right)}{p^{*4}\sin^4{\theta}}</math></center>
 +
 
 +
 
 +
 
 +
<center><math>\left(10\right)\qquad \qquad \frac{-2us}{t^2}=\frac{4p^{*2}\left(1+\cos{\theta}\right)4E^{*2}}{4p^{*2}\left(1-\cos{\theta}\right)^2}=\frac{4E^{*2}\left(1+\cos{\theta}\right)\csc^4{\frac{\theta}{2}}}{p^{*2}}=\frac{4E^{*2}p^{*2}\left(1+\cos{\theta}\right)}{p^{*4}\left(1-\cos{\theta}\right)^2}=\frac{4E^{*2}p^{*2}\left(1+\cos{\theta}\right)\left(1+\cos{\theta}\right)^2}{p^{*4}\left(1-\cos{\theta}\right)^2\left(1+\cos{\theta}\right)^2}=\frac{4E^{*2}p^{*2}\left(\cos^3{\theta}+3\cos^2{\theta}+3\cos{\theta}+1\right)}{p^{*4}\sin^4{\theta}}</math></center>
 +
 
 +
 
 +
Combing like terms further,
 +
 
 +
 
 +
<center><math>\left(1,3/4\right)\rightarrow \qquad \qquad 4p^{*4}\cos^4{\theta}+8p^{*4}\cos^2{\theta}+4p^{*4}</math></center>
 +
 
 +
 
 +
<center><math>\left(2,6/5\right) \rightarrow \qquad \qquad 16E^{*4}</math></center>
 +
 
 +
 
 +
<center><math>\left(8/7,10/9\right) \rightarrow \qquad \qquad 16E^{*2}p^{*2}+16E^{*2}p^{*2}\cos^2{\theta}</math></center>
 +
 
 +
 
 +
 
 +
Expressing this as the differential cross-section
 +
 
 +
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4sp^{*4}\sin^4{\theta}}\left( 4p^{*4}\cos^4{\theta}+8p^{*4}\cos^2{\theta}+4p^{*4}+16E^{*2}p^{*2}+16E^{*2}p^{*2}\cos^2{\theta}+16E^{*4}\right) </math></center>
 +
 
 +
 
 +
 
 +
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}p^{*4}\sin^4{\theta}}\left( p^{*4}\cos^4{\theta}+2p^{*4}\cos^2{\theta}+p^{*4}+4E^{*2}p^{*2}+4E^{*2}p^{*2}\cos^2{\theta}+4E^{*4}\right) </math></center>
 +
 
 +
 
 +
In the Ultra-relativistic limit as <math> E \approx p</math>
 +
 
 +
 
 +
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}\sin^4{\theta}}\left( \cos^4{\theta}+6\cos^2{\theta}+9\right)=\frac{\alpha ^2\left(3+\cos^2{\theta}\right)^2}{4E^{*2}\sin^4{\theta}} </math></center>
 +
 
  
  
<center><math>u \equiv -2E^{*2}(1+\cos{\theta})</math></center>
 
  
 +
In the non-relativistic limit as <math> E \approx m</math>
  
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left ( \frac{(4E^{*4}(1-\cos{\theta})^2+16E^{*4})}{4E^{*4}(1+\cos{\theta})^2}-\frac{32E^{*2}}{4E^{*4}(1+\cos{\theta})(1-\cos{\theta})}+\frac{(4E^{*4}(1+\cos{\theta})^2+16E^{*4})}{4E^{*4}(1-\cos{\theta})^2}\right )</math></center>
 
  
 +
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4m^{*2}p^{*4}\sin^4{\theta}}\left( p^{*4}\cos^4{\theta}+2p^{*4}\cos^2{\theta}+p^{*4}+4m^{*2}p^{*2}+4m^{*2}p^{*2}\cos^2{\theta}+4m^{*4}\right) </math></center>
 +
----
  
 +
<center><math>\underline{\textbf{Navigation}}</math></center>
  
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}4E^{*4}}\left ( \frac{(4E^{*4}(1-\cos{\theta})^2+16E^{*4})}{(1+\cos{\theta})^2}-\frac{32E^{*2}}{(1+\cos{\theta})(1-\cos{\theta})}+\frac{(4E^{*4}(1+\cos{\theta})^2+16E^{*4})}{(1-\cos{\theta})^2}\right )</math></center>
+
<center>
 +
[[Lorentz_Transformation_to_Lab_Frame|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]]
 +
[[CED_Verification_of_DC_Angle_Theta_and_Wire_Correspondance|<math>\vartriangleright </math>]]
 +
</center>

Latest revision as of 18:36, 1 January 2019

Navigation_

Differential Cross-Section

dσdΩ=164π2spfinalpinitial|M|2


Working in the center of mass frame

pfinal=pinitial


Determining the scattering amplitude in the center of mass frame


M=e2(ust+tsu)


M2=e4(ust+tsu)(ust+tsu)


M2=e4((us)2t2+(ts)2u2+2(us)t(ts)u)


M2=e4((u22us+s2)t2+(t22ts+s2)u2+2(utst+s2us)tu)


M2=e4((t2+s2)u2+2s2tu+22ust22st2tsu22su+(u2+s2)t2)


Using the fine structure constant (with c==ϵ0=1)

αe24π


dσdΩ=α24s((t2+s2)u2+2s2tu+22ust22st2tsu22su+(u2+s2)t2)


In the center of mass frame the Mandelstam variables are given by:

s4E2


t2p2(1cosθ)



u2p2(1+cosθ)


Calculating the parts to have common denominators:

(1)2=2p4sin4θp4sin4θ=2p4(1cos2θ)2p4sin4θ=2p4(12cos2θ+cos4θ)p4sin4θ


(2)2s2tu=32E44p4(1+cosθ)(1cosθ)=8E4p4sin2θ=8E4sin2θp4sin4=8E4(1cos2θ)p4sin4θ


(3)t2u2=4p2(1cosθ)24p2(1+cosθ)2=tan4θ2=p4(1cosθ)4p4sin4θ=p4(cos4θ4cos3θ+6cos2θ4cosθ+1)p4sin4θ


(4)u2t2=4p2(1+cosθ)24p2(1cosθ)2=cot4θ2=p4(1+cosθ)4p4sin4θ=p4(cos4θ+4cos3θ+6cos2θ+4cosθ+1)p4sin4θ


(5)s2u2=16E44p4(1+cosθ)2=E4sec4θ2p4=4E4p4(1+cosθ)2=4E4(1cosθ)2p4(1+cosθ)2(1cosθ)2=4E4(cos2θ2cosθ+1)p4sin4θ


(6)s2t2=16E44p4(1cosθ)2=E4csc4θ2p4=4E4p4(1cosθ)2=4E4(1+cosθ)2p4(1cosθ)2(1+cosθ)2=4E4(cos2θ+2cosθ+1)p4sin4θ



(7)2st=8E22p2(1cosθ)=4E2p2(1cosθ)=4E2(1+cosθ)p2(1cosθ)(1+cosθ)=4E2(1+cosθ)p2sin2θ=4E2p2sin2θ(1+cosθ)p4sin4θ=4E2p2(1cos2θ)(1+cosθ)p4sin4θ=4E2p2(1+cosθcos2θcos3θ)p4sin4θ


(8)2su=8E22p2(1+cosθ)=4E2p2(1+cosθ)=4E2(1cosθ)p2(1+cosθ)(1cosθ)=4E2(1cosθ)p2sin2θ=4E2p2sin2θ(1cosθ)p4sin4θ=4E2p2(1cos2θ)(1cosθ)p4sin4θ=4E2p2(1cosθcos2θ+cos3θ)p4sin4θ


(9)2tsu2=4p2(1cosθ)4E24p2(1+cosθ)2=4E2(1cosθ)sec4θ2p2=4E2p2(1cosθ)p4(1+cosθ)2=4E2p2(1cosθ)(1cosθ)2p4(1+cosθ)2(1cosθ)2=4E2p2(cos3θ+3cos2θ3cosθ+1)p4sin4θ


(10)2ust2=4p2(1+cosθ)4E24p2(1cosθ)2=4E2(1+cosθ)csc4θ2p2=4E2p2(1+cosθ)p4(1cosθ)2=4E2p2(1+cosθ)(1+cosθ)2p4(1cosθ)2(1+cosθ)2=4E2p2(cos3θ+3cos2θ+3cosθ+1)p4sin4θ


Combing like terms further,


(1,3/4)4p4cos4θ+8p4cos2θ+4p4


(2,6/5)16E4


(8/7,10/9)16E2p2+16E2p2cos2θ


Expressing this as the differential cross-section

dσdΩ=α24sp4sin4θ(4p4cos4θ+8p4cos2θ+4p4+16E2p2+16E2p2cos2θ+16E4)


dσdΩ=α24E2p4sin4θ(p4cos4θ+2p4cos2θ+p4+4E2p2+4E2p2cos2θ+4E4)


In the Ultra-relativistic limit as Ep


dσdΩ=α24E2sin4θ(cos4θ+6cos2θ+9)=α2(3+cos2θ)24E2sin4θ



In the non-relativistic limit as Em


dσdΩ=α24m2p4sin4θ(p4cos4θ+2p4cos2θ+p4+4m2p2+4m2p2cos2θ+4m4)

Navigation_