Difference between revisions of "Differential Cross-Section"
Jump to navigation
Jump to search
(Created page with "<center><math>\mathfrak{M}_{e^-e^-}=e^2(\frac{u-s}{t}+\frac{t-s}{u})</math></center>") |
|||
| (257 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | <center><math>\mathfrak{M} | + | <center><math>\underline{\textbf{Navigation}}</math></center> |
| + | |||
| + | <center> | ||
| + | [[Lorentz_Transformation_to_Lab_Frame|<math>\vartriangleleft </math>]] | ||
| + | [[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]] | ||
| + | [[CED_Verification_of_DC_Angle_Theta_and_Wire_Correspondance|<math>\vartriangleright </math>]] | ||
| + | </center> | ||
| + | |||
| + | =Differential Cross-Section= | ||
| + | |||
| + | <center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi ^2 s}\frac{\mathbf p_{final}}{\mathbf p_{initial}} |\mathfrak{M} |^2</math></center> | ||
| + | |||
| + | |||
| + | Working in the center of mass frame | ||
| + | |||
| + | <center><math>\mathbf p_{final}=\mathbf p_{initial}</math></center> | ||
| + | |||
| + | |||
| + | Determining the scattering amplitude in the center of mass frame | ||
| + | |||
| + | |||
| + | <center><math>\mathfrak{M}=e^2 \left ( \frac{u-s}{t}+\frac{t-s}{u} \right )</math></center> | ||
| + | |||
| + | |||
| + | <center><math>\mathfrak{M}^2=e^4 \left ( \frac{u-s}{t}+\frac{t-s}{u} \right )\left ( \frac{u-s}{t}+\frac{t-s}{u} \right )</math></center> | ||
| + | |||
| + | |||
| + | |||
| + | <center><math>\mathfrak{M}^2=e^4 \left ( \frac{(u-s)^2}{t^2}+\frac{(t-s)^2}{u^2} +2\frac{(u-s)}{t}\frac{(t-s)}{u}\right )</math></center> | ||
| + | |||
| + | |||
| + | |||
| + | <center><math>\mathfrak{M}^2=e^4 \left ( \frac{(u^2-2us+s^2)}{t^2}+\frac{(t^2-2ts+s^2)}{u^2} +2\frac{(ut-st+s^2-us)}{tu}\right )</math></center> | ||
| + | |||
| + | |||
| + | |||
| + | <center><math>\mathfrak{M}^2=e^4 \left ( \frac{(t^2+s^2)}{u^2}+\frac{2s^2}{tu}+2-\frac{2us}{t^2}-\frac{2s}{t}-\frac{2ts}{u^2}-\frac{2s}{u}+\frac{(u^2+s^2)}{t^2}\right )</math></center> | ||
| + | |||
| + | |||
| + | |||
| + | Using the fine structure constant (<math>with\ c=\hbar=\epsilon_0=1</math>) | ||
| + | <center><math>\alpha \equiv \frac{e^2}{4\pi}</math></center> | ||
| + | |||
| + | |||
| + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4s}\left ( \frac{(t^2+s^2)}{u^2}+\frac{2s^2}{tu}+2-\frac{2us}{t^2}-\frac{2s}{t}-\frac{2ts}{u^2}-\frac{2s}{u}+\frac{(u^2+s^2)}{t^2}\right )</math></center> | ||
| + | |||
| + | |||
| + | In the center of mass frame the Mandelstam variables are given by: | ||
| + | |||
| + | <center><math>s \equiv 4E^{*2}</math></center> | ||
| + | |||
| + | |||
| + | |||
| + | <center><math>t \equiv -2p^{*2}(1-\cos{\theta})</math></center> | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <center><math>u \equiv -2p^{*2}(1+\cos{\theta})</math></center> | ||
| + | |||
| + | |||
| + | Calculating the parts to have common denominators: | ||
| + | |||
| + | <center><math>\left(1\right)\qquad \qquad 2=\frac{2p^{*4}\sin^4{\theta}}{p^{*4}\sin^4{\theta}}=\frac{2p^{*4}\left(1-\cos^2{\theta}\right)^2}{p^{*4}\sin^4{\theta}}=\frac{2p^{*4}\left(1-2\cos^2{\theta}+\cos^4{\theta}\right)}{p^{*4}\sin^4{\theta}}</math></center> | ||
| + | |||
| + | |||
| + | |||
| + | <center><math>\left(2\right)\qquad \qquad \frac{2s^2}{tu}=\frac{32E^{*4}}{4p^{*4}\left(1+\cos{\theta}\right)\left(1-\cos{\theta}\right)}=\frac{8E^{*4}}{p^{*4}\sin^2{\theta}}=\frac{8E^{*4}\sin^2{\theta}}{p^{*4}\sin^4}=\frac{8E^{*4}\left(1-\cos^2{\theta}\right)}{p^{*4}\sin^4{\theta}}</math></center> | ||
| + | |||
| + | |||
| + | |||
| + | <center><math>\left(3\right)\qquad \qquad \frac{t^2}{u^2}=\frac{4p^{*2}\left(1-\cos{\theta}\right)^2}{4p^{*2}\left(1+\cos{\theta}\right)^2}=\tan^4{\frac{\theta}{2}}=\frac{p^{*4}\left(1-\cos{\theta}\right)^4}{p^{*4}\sin^4{\theta}}=\frac{p^{*4}\left(\cos^4{\theta}-4\cos^3{\theta}+6\cos^2{\theta}-4\cos{\theta}+1\right)}{p^{*4}\sin^4{\theta}}</math></center> | ||
| + | |||
| + | |||
| + | <center><math>\left(4\right)\qquad \qquad \frac{u^2}{t^2}=\frac{4p^{*2}\left(1+\cos{\theta}\right)^2}{4p^{*2}\left(1-\cos{\theta}\right)^2}=\cot^4{\frac{\theta}{2}}=\frac{p^{*4}\left(1+\cos{\theta}\right)^4}{p^{*4}\sin^4{\theta}}=\frac{p^{*4}\left(\cos^4{\theta}+4\cos^3{\theta}+6\cos^2{\theta}+4\cos{\theta}+1\right)}{p^{*4}\sin^4{\theta}}</math></center> | ||
| + | |||
| + | |||
| + | |||
| + | <center><math>\left(5\right)\qquad \qquad \frac{s^2}{u^2}=\frac{16E^{*4}}{4p^{*4}\left(1+\cos{\theta}\right)^2}=\frac{E^{*4}\sec^4{\frac{\theta}{2}}}{p^{*4}}=\frac{4E^{*4}}{p^{*4}\left(1+\cos{\theta}\right)^2}=\frac{4E^{*4}\left(1-\cos{\theta}\right)^2}{p^{*4}\left(1+\cos{\theta}\right)^2\left(1-\cos{\theta}\right)^2}=\frac{4E^{*4}\left(\cos^2{\theta}-2\cos{\theta}+1\right)}{p^{*4}\sin^4{\theta}}</math></center> | ||
| + | |||
| + | |||
| + | |||
| + | <center><math>\left(6\right)\qquad \qquad \frac{s^2}{t^2}=\frac{16E^{*4}}{4p^{*4}\left(1-\cos{\theta}\right)^2}=\frac{E^{*4}\csc^4{\frac{\theta}{2}}}{p^{*4}}=\frac{4E^{*4}}{p^{*4}\left(1-\cos{\theta}\right)^2}=\frac{4E^{*4}\left(1+\cos{\theta}\right)^2}{p^{*4}\left(1-\cos{\theta}\right)^2\left(1+\cos{\theta}\right)^2}=\frac{4E^{*4}\left(\cos^2{\theta}+2\cos{\theta}+1\right)}{p^{*4}\sin^4{\theta}}</math></center> | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <center><math>\left(7\right)\qquad \qquad \frac{-2s}{t}=\frac{8E^{*2}}{2p^{*2}\left(1-\cos{\theta}\right)}=\frac{4E^{*2}}{p^{*2}\left(1-\cos{\theta}\right)}=\frac{4E^{*2}\left(1+\cos{\theta}\right)}{p^{*2}\left(1-\cos{\theta}\right)\left(1+\cos{\theta}\right)}=\frac{4E^{*2}\left(1+\cos{\theta}\right)}{p^{*2}\sin^2{\theta}}=\frac{4E^{*2}p^{*2}sin^2{\theta}\left(1+\cos{\theta}\right)}{p^{*4}sin^4{\theta}}=\frac{4E^{*2}p^{*2}\left(1-cos^2{\theta}\right)\left(1+\cos{\theta}\right)}{p^{*4}sin^4{\theta}}=\frac{4E^{*2}p^{*2}\left(1+\cos{\theta}-\cos^2{\theta}-\cos^3{\theta}\right)}{p^{*4}sin^4{\theta}}</math></center> | ||
| + | |||
| + | |||
| + | |||
| + | <center><math>\left(8\right)\qquad \qquad \frac{-2s}{u}=\frac{8E^{*2}}{2p^{*2}\left(1+\cos{\theta}\right)}=\frac{4E^{*2}}{p^{*2}\left(1+\cos{\theta}\right)}=\frac{4E^{*2}\left(1-\cos{\theta}\right)}{p^{*2}\left(1+\cos{\theta}\right)\left(1-\cos{\theta}\right)}=\frac{4E^{*2}\left(1-\cos{\theta}\right)}{p^{*2}sin^2{\theta}}=\frac{4E^{*2}p^{*2}sin^2{\theta}\left(1-\cos{\theta}\right)}{p^{*4}sin^4{\theta}}=\frac{4E^{*2}p^{*2}\left(1-cos^2{\theta}\right)\left(1-\cos{\theta}\right)}{p^{*4}sin^4{\theta}}=\frac{4E^{*2}p^{*2}\left(1-\cos{\theta}-\cos^2{\theta}+\cos^3{\theta}\right)}{p^{*4}sin^4{\theta}}</math></center> | ||
| + | |||
| + | |||
| + | |||
| + | <center><math>\left(9\right)\qquad \qquad \frac{-2ts}{u^2}=\frac{4p^{*2}\left(1-\cos{\theta}\right)4E^{*2}}{4p^{*2}\left(1+\cos{\theta}\right)^2}=\frac{4E^{*2}\left(1-\cos{\theta}\right)\sec^4{\frac{\theta}{2}}}{p^{*2}}=\frac{4E^{*2}p^{*2}\left(1-\cos{\theta}\right)}{p^{*4}\left(1+\cos{\theta}\right)^2}=\frac{4E^{*2}p^{*2}\left(1-\cos{\theta}\right)\left(1-\cos{\theta}\right)^2}{p^{*4}\left(1+\cos{\theta}\right)^2\left(1-\cos{\theta}\right)^2}=\frac{4E^{*2}p^{*2}\left(-\cos^3{\theta}+3\cos^2{\theta}-3\cos{\theta}+1\right)}{p^{*4}\sin^4{\theta}}</math></center> | ||
| + | |||
| + | |||
| + | |||
| + | <center><math>\left(10\right)\qquad \qquad \frac{-2us}{t^2}=\frac{4p^{*2}\left(1+\cos{\theta}\right)4E^{*2}}{4p^{*2}\left(1-\cos{\theta}\right)^2}=\frac{4E^{*2}\left(1+\cos{\theta}\right)\csc^4{\frac{\theta}{2}}}{p^{*2}}=\frac{4E^{*2}p^{*2}\left(1+\cos{\theta}\right)}{p^{*4}\left(1-\cos{\theta}\right)^2}=\frac{4E^{*2}p^{*2}\left(1+\cos{\theta}\right)\left(1+\cos{\theta}\right)^2}{p^{*4}\left(1-\cos{\theta}\right)^2\left(1+\cos{\theta}\right)^2}=\frac{4E^{*2}p^{*2}\left(\cos^3{\theta}+3\cos^2{\theta}+3\cos{\theta}+1\right)}{p^{*4}\sin^4{\theta}}</math></center> | ||
| + | |||
| + | |||
| + | Combing like terms further, | ||
| + | |||
| + | |||
| + | <center><math>\left(1,3/4\right)\rightarrow \qquad \qquad 4p^{*4}\cos^4{\theta}+8p^{*4}\cos^2{\theta}+4p^{*4}</math></center> | ||
| + | |||
| + | |||
| + | <center><math>\left(2,6/5\right) \rightarrow \qquad \qquad 16E^{*4}</math></center> | ||
| + | |||
| + | |||
| + | <center><math>\left(8/7,10/9\right) \rightarrow \qquad \qquad 16E^{*2}p^{*2}+16E^{*2}p^{*2}\cos^2{\theta}</math></center> | ||
| + | |||
| + | |||
| + | |||
| + | Expressing this as the differential cross-section | ||
| + | |||
| + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4sp^{*4}\sin^4{\theta}}\left( 4p^{*4}\cos^4{\theta}+8p^{*4}\cos^2{\theta}+4p^{*4}+16E^{*2}p^{*2}+16E^{*2}p^{*2}\cos^2{\theta}+16E^{*4}\right) </math></center> | ||
| + | |||
| + | |||
| + | |||
| + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}p^{*4}\sin^4{\theta}}\left( p^{*4}\cos^4{\theta}+2p^{*4}\cos^2{\theta}+p^{*4}+4E^{*2}p^{*2}+4E^{*2}p^{*2}\cos^2{\theta}+4E^{*4}\right) </math></center> | ||
| + | |||
| + | |||
| + | In the Ultra-relativistic limit as <math> E \approx p</math> | ||
| + | |||
| + | |||
| + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4E^{*2}\sin^4{\theta}}\left( \cos^4{\theta}+6\cos^2{\theta}+9\right)=\frac{\alpha ^2\left(3+\cos^2{\theta}\right)^2}{4E^{*2}\sin^4{\theta}} </math></center> | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | In the non-relativistic limit as <math> E \approx m</math> | ||
| + | |||
| + | |||
| + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{4m^{*2}p^{*4}\sin^4{\theta}}\left( p^{*4}\cos^4{\theta}+2p^{*4}\cos^2{\theta}+p^{*4}+4m^{*2}p^{*2}+4m^{*2}p^{*2}\cos^2{\theta}+4m^{*4}\right) </math></center> | ||
| + | ---- | ||
| + | |||
| + | <center><math>\underline{\textbf{Navigation}}</math></center> | ||
| + | |||
| + | <center> | ||
| + | [[Lorentz_Transformation_to_Lab_Frame|<math>\vartriangleleft </math>]] | ||
| + | [[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]] | ||
| + | [[CED_Verification_of_DC_Angle_Theta_and_Wire_Correspondance|<math>\vartriangleright </math>]] | ||
| + | </center> | ||
Latest revision as of 18:36, 1 January 2019
Differential Cross-Section
Working in the center of mass frame
Determining the scattering amplitude in the center of mass frame
Using the fine structure constant ()
In the center of mass frame the Mandelstam variables are given by:
Calculating the parts to have common denominators:
Combing like terms further,
Expressing this as the differential cross-section
In the Ultra-relativistic limit as
In the non-relativistic limit as