Difference between revisions of "Theta Dependent Components"

From New IAC Wiki
Jump to navigation Jump to search
(Created page with "<center> 400 px</center> <center>'''Figure 3: Definition of Moller electron variables in the CM Frame in the x-z plane.'''</center> <center>Using <math>\the…")
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
<center><math>\textbf{\underline{Navigation}}</math>
 +
 +
[[Determining_Momentum_Components_After_Collision_in_CM_Frame|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]]
 +
[[Phi_Dependent_Components|<math>\vartriangleright </math>]]
 +
 +
</center>
 +
 +
 +
 +
=4.1.3.1  Theta Dependent Components=
 +
 
<center>[[File:xz_lab.png | 400 px]]</center>
 
<center>[[File:xz_lab.png | 400 px]]</center>
 
<center>'''Figure 3: Definition of Moller electron variables in the CM Frame in the x-z plane.'''</center>
 
<center>'''Figure 3: Definition of Moller electron variables in the CM Frame in the x-z plane.'''</center>
Line 23: Line 35:
  
 
<center><math>\Longrightarrow p^'_{2(z)}\ should\ always\ be\ negative</math></center>
 
<center><math>\Longrightarrow p^'_{2(z)}\ should\ always\ be\ negative</math></center>
 +
 +
 +
 +
----
 +
 +
 +
 +
<center><math>\textbf{\underline{Navigation}}</math>
 +
 +
[[Determining_Momentum_Components_After_Collision_in_CM_Frame|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]]
 +
[[Phi_Dependent_Components|<math>\vartriangleright </math>]]
 +
 +
</center>

Latest revision as of 15:00, 30 May 2017

[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]


4.1.3.1 Theta Dependent Components

Xz lab.png
Figure 3: Definition of Moller electron variables in the CM Frame in the x-z plane.
Using [math]\theta '_2=\arccos \left(\frac{p^'_{2(z)}}{p^'_{2}}\right)[/math]


[math]\Longrightarrow {p^'_{2(z)}=p^'_{2}\cos(\theta '_2)}[/math]



Checking on the sign resulting from the cosine function, we are limited to:

[math]90^\circ \le \theta '_2 \le 180^\circ \equiv \frac{\pi}{2} \le \theta '_2 \le \pi Radians[/math]

Since,

[math]\frac{p^'_{2(z)}}{p^'_{2}}=cos(\theta '_2)[/math]


[math]\Longrightarrow p^'_{2(z)}\ should\ always\ be\ negative[/math]




[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]