|   |     | 
| Line 1: | Line 1: | 
| − | == Overview == | + | ==Class Admin== | 
|  |  |  |  | 
| − | === Particle Detection ===
 |  | 
| − | A device detects a particle only after the particle transfers energy to the device.
 |  | 
|  |  |  |  | 
| − | Energy intrinsic to a device depends on the material used in a device
 | + | [[TF_SPIM_ClassAdmin]] | 
|  |  |  |  | 
| − | Some device of material with an average atomic number (<math>Z</math>) is at some temperature (<math>T</math>).  The materials atoms are in constant thermal motion (unless T =zero degrees Klevin).
 | + | == Homework Problems== | 
|  | + | [[HomeWork_Simulations_of_Particle_Interactions_with_Matter]] | 
|  |  |  |  | 
| − | Statistical Thermodynamics tells us that the canonical energy distribution of the atoms is given by the Maxwell-Boltzmann statistics such that
 | + | =Introduction= | 
|  |  |  |  | 
| − | <math>P(E) = \frac{1}{kT} e^{-\frac{E}{kT}}</math>
 | + | [[TF_SPIM_Intro]] | 
|  |  |  |  | 
| − | <math>P(E)</math> represents the probability of any atom in the system having an energy <math>E</math> where 
 | + | = Energy Loss = | 
|  |  |  |  | 
| − | <math>k= 1.38 \times 10^{-23} \frac{J}{mole \cdot K}</math>
 | + | [[TF_SPIM_StoppingPower]] | 
|  |  |  |  | 
| − | Note:  You may be more familiar with the Maxwell-Boltzmann distribution in the form
 | + | Ann. Phys. vol. 5, 325, (1930) | 
|  |  |  |  | 
| − | <math>N(\nu) =4 \pi N \left ( \frac{m}{2\pi k T} \right ) ^{3/2} v^2  e^{-mv^2/2kT}</math>
 | + | =Interactions of Electrons and Photons with Matter= | 
|  |  |  |  | 
| − | where <math>N(v) \Delta v</math> would represent the molesules in the gas sample with speeds between <math>v</math> and <math>v + \Delta v</math>
 | + | [[TF_SPIM_e-gamma]] | 
|  |  |  |  | 
| − | ==== Example 1: P(E=5 eV) ====
 | + | Physics Reference | 
|  |  |  |  | 
| − | ;What is the probability that an atom in a 12.011 gram block of carbon would have and energy of 5 eV? 
 | + | https://indico.cern.ch/event/679723/contributions/2792554/attachments/1559217/2454299/PhysicsReferenceManual.pdf | 
|  |  |  |  | 
| − | First lets check that the probability distribution is Normailized; ie:does <math>\int_0^{\infty} P(E) dE =1</math>?
 | + | Physics lists | 
|  | + | https://geant4.web.cern.ch/documentation/dev/plg_html/PhysicsListGuide/physicslistguide.html | 
|  |  |  |  | 
|  | + | Livermore is the default model  | 
|  |  |  |  | 
| − | <math>\int_0^{\infty} P(E) dE = \int_0^{\infty} \frac{1}{kT} e^{-\frac{E}{kT}} dE = \frac{1}{kT} \frac{1}{\frac{1}{-kT}} e^{-\frac{E}{kT}} \mid_0^{\infty} = - [e^{-\infty} - e^0]= 1</math>
 | + | https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_02046.pdf | 
|  |  |  |  | 
| − | <math>P(E=5eV)</math> is calculated by integrating P(E) over some energy interval ( ie:<math> N(v) dv</math>).  I will arbitrarily choose 4.9 eV to 5.1 eV as a starting point.
 |  | 
|  |  |  |  | 
|  | + | New PW models | 
|  |  |  |  | 
| − | <math>\int_{4.9 eV}^{5.1 eV} P(E) dE =  - [e^{-5.1 eV/kT} - e^{4.9 eV/kT}]</math>
 | + | https://indico.cern.ch/event/629841/contributions/2712690/attachments/1518832/2371867/PE_models_G4GV.pdf | 
|  |  |  |  | 
| − | <math>k= (1.38 \times 10^{-23} \frac{J}{mole \cdot K} )  =  (1.38 \times 10^{-23} \frac{J}{mole \cdot K} )(6.42 \times 10^{18} \frac{eV}{J})= 8.614 \times 10^{-5} \frac {eV}{mole \cdot K}</math>
 | + | https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsReferenceManual/html/index.html | 
|  |  |  |  | 
| − | assuming a room empterature of <math>T=300 K</math>
 | + | https://opengate.readthedocs.io/en/latest/introduction.html | 
|  |  |  |  | 
| − | then<math>kT =0.0258 \frac{eV}{mole}</math>
 | + | = Hadronic Interactions = | 
|  |  |  |  | 
| − | and
 | + | [[TF_SPIM_HadronicInteractions]] | 
|  |  |  |  | 
| − | <math>\int_{4.9 eV}^{5.1 eV} P(E) dE = - [e^{-5.1/0.0258} - e^{4.9/0.0258}] =4.48 \times 10^{-83} - 1.9 \times 10^{-86} \approx 4.48 \times 10^{-83}</math>
 | + | = Final Project= | 
|  |  |  |  | 
| − | or in other words the precise mathematical calculation of the probability may beapproximated by just using thedistribution function alone
 | + | A final project will be submitted that will be graded with the following metrics: | 
|  |  |  |  | 
| − | <math>P(E=5eV)= e^{-5/0.0258} \approx 10^{-85}</math>
 | + | 1.) The document must be less than 15 pages. | 
|  |  |  |  | 
| − | This approximation breaks down as <math>E \rightarrow 0.0258 eV</math>
 | + | 2.) The document must contain references in a bibliography (5 points) . | 
|  |  |  |  | 
| − | Since we have 12.011 grams of carbon and1 mole ofcarbon = 12.011 g = <math>6 \times 10^{23} </math>carbon atoms
 | + | 3.) A comparison must be made between GEANT4's prediction and either the prediction of someone else or an experimental result(30 points). | 
|  |  |  |  | 
| − | We do not expect to see a 5 eV carbon atom in a sample size of<math>6 \times 10^{23} </math> carbon atoms when theprobability of observing such an atom is <math>\approx 10^{-85}</math>
 | + | 4.) The graphs must be of publication quality with font sizes similar or larger than the 12 point font (10 points). | 
|  |  |  |  | 
| − | The energy we expect to see would becalculated by | + | 5.) The document must be grammatically correct (5 points). | 
|  |  |  |  | 
| − | <math><E> = \int_{0}^{\infty} E \cdot P(E)dE</math>
 | + | 6.) The document format must contain the following sections: An abstract of 5 sentences (5 points) , an Introduction(10 points), a Theory section (20 points) , if applicable a section describing the experiment that was simulated, a section delineating the comparisons that were made, and a conclusion( 15 points). | 
|  |  |  |  | 
| − | If you used this block of carbon as a detector you would easily notice an event in which a carbon atom absorbed 5 eV of energy as compared to the energy of a typical atom in the carbon block.
 | + | =Resources= | 
|  |  |  |  | 
| − | ----
 | + | [http://geant4.web.cern.ch/geant4/  GEANT4 Home Page] | 
|  |  |  |  | 
| − | ;Silicon detectors and Ionization chambers are two commonly used devices for detecting radiation.
 | + | [http://root.cern.ch ROOT Home page] | 
|  |  |  |  | 
| − | approximately 1 eV of energy is all that you need to create an electron-ion pair in Silicon
 | + | [http://conferences.fnal.gov/g4tutorial/g4cd/Documentation/WorkshopExercises/  Fermi Lab Example] | 
|  |  |  |  | 
| − | <math>P(E=1 eV) = e^{-1/0.0258} \approx 10^{-17}</math>
 |  | 
|  |  |  |  | 
| − | approximately 10 eV of energy is needed to ionize an atom in a gas chamber
 | + | [http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html NIST Range Tables] | 
|  |  |  |  | 
| − | <math>P(E=10 eV) = e^{-10/0.0258} \approx 10^{-169}</math>
 | + | [http://ie.lbl.gov/xray/  X-ray specturm] | 
|  |  |  |  | 
|  | + | [[Installing_GEANT4.9.3_Fsim]] | 
|  |  |  |  | 
|  | + | == Saving/restoring Random number seed== | 
|  |  |  |  | 
| − | The low probability ofhaving an atom with10 eV of energy means that an ionization chamber would have a better Signal to Noise ratio (SNR) for detecting 10 eV radiation than a silicon detector
 | + | You save the current state of the random number generator with the command | 
|  |  |  |  | 
| − | But if you cool the silicon detector to 200 degrees Kelvin (200 K) then 
 | + | /random/setSavingFlag 1 | 
|  |  |  |  | 
| − | <math>P(E=1 eV) = e^{-1/0.0172} \approx 10^{-26}  10^{-17}<< </math>
 | + | /run/beamOn 100 | 
|  |  |  |  | 
| − | So cooling your detector will slow the atoms down making it more noticable when one of the atoms absorbs energy.
 | + | /random/saveThisRun | 
|  |  |  |  | 
| − | also, if the radiation flux islarge, more electron-hole pairs are createdand you get a more noticeable signal.
 | + | A file is created called  | 
|  |  |  |  | 
| − | Unfortunately, with some detectore, like silicon, you can cause radiation damage that diminishes it's quantum efficiency for absorbing energy.
 | + | currentEvent.rndm | 
|  |  |  |  | 
| − | === The Monte Carlo method ===
 | + | /control/shell mv currentEvent.rndm currentEvent10.rndm | 
| − | ; Stochastic
 |  | 
| − | : from the greek word "stachos"
 |  | 
| − | : a means of, relating to, or characterized by conjecture and randomness.
 |  | 
|  |  |  |  | 
|  |  |  |  | 
| − | A stochastic process is one whose behavior is non-deterministic in that thenext state of theprocess is partially determined.
 | + | You can restore the random number generator and begin generating random number from the last save time | 
|  |  |  |  | 
| − | Physics has many such non-deterministic systems:
 | + | /random/resetEngineFrom currentEvent.rndm | 
|  |  |  |  | 
| − | *Quantum Mechanics
 |  | 
| − | *Thermodynamics
 |  | 
|  |  |  |  | 
|  | + | == Creating Template== | 
|  |  |  |  | 
| − | Basically the monte-carlo method uses a random number generator (RNG) to generate a distribution (gaussian, uniform, Poission,...) which is used to solve a stochastic process based on an astochastic description.
 | + | [[TForest_G4_Template]] | 
|  |  |  |  | 
|  | + | ==Building GEANT4.11== | 
|  |  |  |  | 
| − | ==== Example 2Calculation of <math>\pi</math>==== | + | ===4.11.2=== | 
|  | + | [[TF_GEANT4.11]] | 
|  |  |  |  | 
| − | ;Astochastic description:
 | + | ==Building GEANT4.10== | 
| − | : <math>\pi</math> may be measured as the ratio of the area of a circle of radius <math>r</math> divided by the area of a square of length <math>2r</math>
 |  | 
|  |  |  |  | 
| − | [[Image:PI_from_AreaRatio.jpg]]<math>\frac{A_{circle}}{A_{square}} = \frac{\pi r^2}{4r^2} = \frac{\pi}{4}</math>
 |  | 
|  |  |  |  | 
| − | You can measure the value of <math>\pi</math> if you physically measure the above ratios.
 | + | ===4.10.02=== | 
|  |  |  |  | 
| − | ; Stochastic description:
 | + | [[TF_GEANT4.10.2]] | 
| − | : Construct a dart board representing the above geometry, throw several darts at it, and look at a ratio of the number of darts in the circle to the total number of darts thrown (assuming you always hit the dart board).
 | + | ===4.10.01=== | 
|  |  |  |  | 
| − | ; Monte-Carlo Method
 | + | [[TF_GEANT4.10.1]] | 
| − | :Here is an outline of a program to calulate <math>\pi</math> using the Monte-Carlo method with the above Stochastic description
 |  | 
| − | [[Image:MC_PI_fromAreaRatio.jpg]] |  | 
| − |  begin loop
 |  | 
| − |   x=rnd
 |  | 
| − |   y=rnd
 |  | 
| − |   dist=sqrt(x*x+y*y)
 |  | 
| − |   if dist <= 1.0 then numbCircHits+=1.0
 |  | 
| − |   numbSquareHist += 1.0
 |  | 
| − |  end loop
 |  | 
| − |   print PI = 4*numbCircHits/numbSquareHits
 |  | 
|  |  |  |  | 
| − | === A Unix Primer === | + | ==Building GEANT4.9.6== | 
| − | To get our feet wet using the UNIX operating system, we will try to solve example 2 above using a RNG under UNIX
 |  | 
|  |  |  |  | 
| − | ==== List of important Commands====
 | + | [[TF_GEANT4.9.6]] | 
|  |  |  |  | 
| − | # ls
 | + | ==Building GEANT4.9.5== | 
| − | # pwd
 |  | 
| − | # cd
 |  | 
| − | # df
 |  | 
| − | # ssh
 |  | 
| − | # scp
 |  | 
| − | # mkdir
 |  | 
| − | # printenv
 |  | 
| − | # emacs, vi, vim
 |  | 
| − | # make, gcc
 |  | 
| − | # man
 |  | 
| − | # less
 |  | 
| − | # rm
 |  | 
|  |  |  |  | 
| − | ----
 | + | [[TF_GEANT4.9.5]] | 
| − | Most of the commands executed within a shell under UNIX have command line arguments (switches) which tell the command to print information about using the command to the screen. The common forms of these switches are "-h", "--h", or "--help"
 |  | 
|  |  |  |  | 
| − |  ls --help
 | + | An old version of Installation notes for versions prior to 9.5 | 
| − |  ssh -h
 |  | 
|  |  |  |  | 
| − | '' the switch deponds on your flavor of UNIX''
 | + | [http://brems.iac.isu.edu/~tforest/NucSim/Day3/ Old Install Notes] | 
|  |  |  |  | 
| − | if using the switch doesn;t help you can try the "man" (sort for manual) pages (if they were installed).  
 |  | 
| − | Try
 |  | 
| − |  man -k pwd
 |  | 
|  |  |  |  | 
| − | the above command will search the manual for the key word "pwd"
 | + | Visualization Libraries: | 
|  |  |  |  | 
| − | ==== Example 3:using UNIX ====
 | + | [http://www.opengl.org/ OpenGL] | 
|  |  |  |  | 
| − | Step
 | + | [http://geant4.kek.jp/~tanaka/DAWN/About_DAWN.html  DAWN] | 
| − | # login to inca.<br> [http://physics.isu.edu/~tforest/Classes/NucSim/Day1/XwindowsOnWindows.htmlclick here for a description of logging in if using windows]
 |  | 
| − | # mkdir src
 |  | 
| − | # cd src
 |  | 
| − | # cp -R ~tforest/NucSim/Day1 ./
 |  | 
| − | # ls
 |  | 
| − | # cd Day1
 |  | 
| − | # make
 |  | 
| − | #./rndtest
 |  | 
|  |  |  |  | 
| − | [http://physics.isu.edu/~tforest/Classes/NucSim/Day1/RNG/Marsaglia/noviceExample/ Here is a web link to the source files you can copy in case the above doesn't work]
 |  | 
|  |  |  |  | 
| − | === A Root Primer ===
 | + | [http://doc.coin3d.org/Coin/  Coin3D] | 
| − | ==== Example 1:Create Ntuple and Draw Histogram====
 |  | 
|  |  |  |  | 
| − | === Cross Sections === | + | ==Compiling G4 with ROOT== | 
| − | ==== Definitions ====
 |  | 
| − | <math>\sigma(\theta)</math> = scattering cross-section <math>\equiv \frac{\frac{\# particles\; scattered}{solid \; angle}} {\frac{ \# incident \; particles}{Area}}</math>
 |  | 
|  |  |  |  | 
| − | ; Solid Angle
 | + | These instruction describe how you can create a tree within ExN02SteppingVerbose to store tracking info in an array (max number of steps in a track is set to 100 for the desired particle) | 
| − | :[[Image:SolidAngleDefinition.jpg]]
 |  | 
| − | : <math>\Omega</math>= surface area of asphere covered by the detector
 |  | 
| − | : ie;the detectors area projected onto the surface of asphere
 |  | 
| − | :A= surface area of detector
 |  | 
| − | :r=distance from interaction point todetector
 |  | 
| − | :<math>\Omega = \frac{A}{r^2} </math>sterradians
 |  | 
| − | : <math>A_{sphere} = 4 \pi r^2</math> if your detector was a hollow ball
 |  | 
| − | :<math>\Omega_{max} = \frac{4 \pi r^2}{r^2} = 4\pi</math>sterradians
 |  | 
|  |  |  |  | 
| − | ;Units
 | + | [[G4CompileWRootforTracks]] | 
| − | :Cross-sections have the units of Area
 |  | 
| − | :1 barn = <math>10^{-28} m^2</math>
 |  | 
| − | ; [units of <math>\sigma(\theta)</math>] =<math>\frac{\frac{[particles]}{[sterradian]}} {\frac{ [particles]}{[m^2]}} = m^2</math>
 |  | 
|  |  |  |  | 
|  | + | ==Using SLURM== | 
|  |  |  |  | 
| − | [[Image:FixedTargetScatteringCrossSection.jpg]]
 | + | http://slurm.schedmd.com/quickstart.html | 
| − | ; Fixed target scattering
 |  | 
| − | : <math>N_{in}</math>= # of particles in = <math>I \cdot A_{in}</math>
 |  | 
| − | :: <math>A_{in}</math> is the area of the ring of incident particles
 |  | 
| − | :<math>dN_{in} = I \cdot dA = I (2\pi b) db</math>= # particles in a ring of radius <math>b</math> and thickness <math>db</math>
 |  | 
|  |  |  |  | 
| − | You can measure <math>\sigma(\theta)</math> if you measure the # of particles detected <math>d N</math> in a known detector solid angle <math>d \Omega</math> from a know incident particle Flux (<math>I</math>)  as
 |  | 
|  |  |  |  | 
| − | <math>\sigma(\theta) = \frac{\frac{d N}{ d \Omega}}{I}</math>
 | + | https://rc.fas.harvard.edu/resources/documentation/convenient-slurm-commands/ | 
|  |  |  |  | 
| − | Alternatively if you have a theory which tells you <math>\sigma(\theta)</math> which you want to test experimentally with a beam of flux <math>I</math> then you would measure counts (particles)
 | + | ===simple batch script for one process job=== | 
|  |  |  |  | 
| − | <math>dN = I \sigma(\theta) d \Omega = I \sigma(\theta)  \frac{d A}{r^2} = I \sigma(\theta) \frac{r^2 \sin(\theta) d \theta d \phi}{r^2}</math>
 | + | create the file submit.sbatch below | 
|  |  |  |  | 
| − | ;Units
 | + | <pre> | 
| − | : <math>[d N] =[\frac {particles}{m^2}][m^2] [sterradian] </math>= # of particles
 | + | #!/bin/sh | 
| − | : or for a count rate divide both sides by time and you get beam current on the RHS
 | + | #SBATCH --time=1 | 
| − | : integrate and you have the total number of counts
 | + | cd src/PI | 
|  | + | ./PI_MC 100000000000000 | 
|  | + | </pre> | 
|  |  |  |  | 
| − | ;Classical Scattering
 | + | the execute | 
| − | : In classical scattering you get thesame number of particle out that you put in (no capture, conversion,..)
 |  | 
| − | : <math>d N_{in} = dN</math>
 |  | 
| − | :<math>d N_{in} = I dA = I (2\pi b) db</math>
 |  | 
| − | : <math>d N = I \sigma(\theta) d \Omega =   I \sigma(\theta) \sin(\theta) d \theta d \phi = I \sigma(\theta) \sin(\theta) d \theta (2 \pi )</math>
 |  | 
| − | :<math>  I (2\pi b) db =  I \sigma(\theta) \sin(\theta) d \theta (2 \pi )</math>
 |  | 
| − | :<math>    b  db =   \sigma(\theta) \sin(\theta) d \theta </math>
 |  | 
| − | :<math>\sigma(\theta) =  \frac{b}{\sin(\theta)}\frac{db}{d \theta}</math>
 |  | 
| − | :<math>\frac{db}{d \theta}</math> tells you how the impact parameter <math>b</math> changes with scattering angle <math>\theta</math>
 |  | 
|  |  |  |  | 
| − | ==== Example :Elastic Scattering ====
 | + | :sbatch submit.sbatch | 
| − | This example is an example of classical scattering.
 |  | 
|  |  |  |  | 
| − | Our goal is to find <math>\sigma(\theta)</math> for an elastic collision of 2 impenetrable spheres of diameter <math>a</math>.  To solve this elastic scattering problem we will describe the collision in the Center of Mass (C.M.) frame.  As we shall see, in the C.M. fram the 2-body collision becomes a 1-body problem.
 | + | check if its running with  | 
|  |  |  |  | 
| − | [[Image:SPIM_ElasCollis_Lab_CM_Frame.jpg]]
 | + | :squeue | 
|  |  |  |  | 
| − | ; Variable definitions
 | + | to kill a batch job  | 
| − | :<math>b</math>= impact parameter ; distance of closest approach
 |  | 
| − | :<math>m_1</math>= mass of incoming ball
 |  | 
| − | :<math>m_2</math>= mass of target ball
 |  | 
| − | :<math>u_1</math>= iniital velocity of  incoming ball in Lab Frame
 |  | 
| − | :<math>v_1</math>= final velocity of  <math>m_1</math> in Lab Frame
 |  | 
| − | :<math>\psi_1</math>= scattering angle of <math>m_1</math> in lab frame after collision
 |  | 
| − | :<math>u_1^{\prime}</math>= iniital velocity of  <math>m_1</math> in C.M.  Frame
 |  | 
| − | :<math>v_1^{\prime}</math>= final velocity of  <math>m_1</math> in C.M. Frame
 |  | 
| − | :<math>u_2^{\prime}</math>= iniital velocity of  <math>m_2</math> in C.M.  Frame
 |  | 
| − | :<math>v_2^{\prime}</math>= final velocity of  <math>m_2</math> in C.M. Frame
 |  | 
| − | :<math>\theta</math>= scattering angle of <math>m_1</math> in C.M. frame after collision
 |  | 
|  |  |  |  | 
|  | + | :scancel JOBID | 
|  |  |  |  | 
| − | We can reduct the 2-body problem to a 1-body problem using the following coordinates
 | + | ===On minerve=== | 
|  |  |  |  | 
| − | [[Image:SPIM_2Body-1BodyCoordSystem.jpg]]
 | + | Sample script to submit 10 batch jobs. | 
|  |  |  |  | 
| − | ; vector definitions
 | + | the filename is minervesubmit and you run like  | 
| − | :<math>\vec{r_1}</math> = a position vector pointing to thelocation of <math>m_1</math>
 | + |  source minervesubmit | 
| − | :<math>\vec{r_2}</math> = a position vector pointing to the location of <math>m_2</math>
 |  | 
| − | :<math>\vec{R}</math> = a position vector pointing to the center of mass of the two ball system
 |  | 
| − | :<math>\vec{r} \equiv \vec{r_1} - \vec{r_2}</math> = the magnitude of this vector is the distance between the two masses
 |  | 
|  |  |  |  | 
| − | In the C.M.reference frame the above vectors have the following relationships
 | + | <pre> | 
|  | + | cd /home/foretony/src/GEANT4/geant4.9.5/Simulations/N02wROOT/batch | 
|  | + | qsub submit10mil | 
|  | + | qsub submit20mil | 
|  | + | qsub submit30mil | 
|  | + | qsub submit40mil | 
|  | + | qsub submit50mil | 
|  | + | qsub submit60mil | 
|  | + | qsub submit70mil | 
|  | + | qsub submit80mil | 
|  | + | qsub submit90mil | 
|  | + | qsub submit100mil | 
|  | + | </pre> | 
|  |  |  |  | 
| − | # <math>\vec{R} = 0 = \frac{m1 \vec{r_1} + m2 \vec{r_2}}{m_1 + m_2} \Rightarrow m_2 \vec{r_1} = -m_2 \vec{r_2}</math>
 | + | The file submit10mil looks like this | 
| − | # <math>\vec{r_1} - \vec{r_2} = \vec{r}</math>
 | + | <pre> | 
|  | + | #!/bin/sh | 
|  | + | #PBS -l nodes=1 | 
|  | + | #PBS -A FIAC | 
|  | + | #PBS -M foretony@isu.edu | 
|  | + | #PBS -m abe | 
|  | + | # | 
|  | + | source /home/foretony/src/GEANT4/geant4.9.5/geant4.9.6-install/bin/geant4.sh | 
|  | + | cd /home/foretony/src/GEANT4/geant4.9.5/Simulations/N02wROOT/batch/10mil | 
|  | + | ../../exampleN02 run1.mac > /dev/null  | 
|  | + | </pre> | 
|  |  |  |  | 
| − | solving the above equations for <math>\vec{r_1}</math> and <math>\vec{r_2}</math> and defining the reduced mass <math>\mu</math> as
 |  | 
|  |  |  |  | 
| − | :<math>\mu = \frac{m_1 \cdot m_2}{m_1 + m_2} \equiv</math> reduced mass
 | + | use | 
|  |  |  |  | 
| − | leads to 
 | + |  qstat | 
|  |  |  |  | 
| − | : <math>\vec{r_1} = \frac{\mu}{m_1} \vec{r}</math>
 | + | to check that the process is still running | 
| − | : <math>\vec{r_2} = \frac{\mu}{m_2} \vec{r}</math>
 |  | 
|  |  |  |  | 
| − | We can usethe above relationships to construct a Hamilton in terms of <math>\vec{r}</math> instead of <math>\vec{r_1}</math> and <math> \vec{r_2}</math> thereby reducing the problem from a 2-body problem to a 1-body problem.
 | + | use | 
|  |  |  |  | 
| − | ; Construct the Hamiltonian
 | + |  qdel jobID# | 
|  |  |  |  | 
| − | To construct theHamiltonian for this problem we will start with theLagrangian.
 | + | if you want to kill the batch job, the jobID number shows up when you do stat. | 
|  |  |  |  | 
|  | + | for example | 
|  | + | <pre> | 
|  | + | [foretony@minerve HW10]$ qstat | 
|  | + | Job id                    Name             User            Time Use S Queue | 
|  | + | ------------------------- ---------------- --------------- -------- - ----- | 
|  | + | 27033.minerve             submit           foretony        00:41:55 R default         | 
|  | + | [foretony@minerve HW10]$ qdel 27033 | 
|  | + | [foretony@minerve HW10]$ qstat | 
|  | + | </pre> | 
|  |  |  |  | 
| − | <math>\mathcal{L} =T - U</math>
 | + | ==Definitions of Materials== | 
|  |  |  |  | 
| − | where 
 | + | [[File:MCNP_Compendium_of_Material_Composition.pdf]] | 
|  |  |  |  | 
| − | <math>T \equiv</math> kinetic energy of the system
 | + | ==Minerve2 GEANT 4.10.1 Xterm error== | 
|  |  |  |  | 
| − | <math>U \equiv</math> Potential energy of the system which describes the interaction
 |  | 
|  |  |  |  | 
|  | + | On OS X El Capitan V 10.11.4 using XQuartz | 
|  |  |  |  | 
| − | <math>\mathcal{L} = \frac{1}{2} |\dot{\vec{r_1}}|^2 + \frac{1}{2} |\dot{\vec{r_2}}|^2 - U</math>
 | + | ~/src/GEANT4/geant4.10.1/Simulations/B2/B2a/exsmpleB2a | 
| − | := <math>\frac{1}{2} m_1 \left (\frac{m_2}{m1+m_2} \right )^2  |\dot{\vec{r}}|^2 + \frac{1}{2} m_2 \left (\frac{m_1}{m1+m_2} \right )^2  |\dot{\vec{r}}|^2 -U(\vec{r})</math>
 |  | 
|  |  |  |  | 
| − | after substituting derivative of the expressions for <math>\vec{r_1}</math> and <math>\vec{r_2}</math>
 | + | <pre> | 
|  |  |  |  | 
| − | : = <math>\frac{1}{2} \mu |\dot{\vec{r}}|^2 -U(\vec{r})</math> The 2-body problem is now described by a 1-body Lagrangian | + | # Use this open statement to create an OpenGL view: | 
|  | + | /vis/open OGL 600x600-0+0 | 
|  | + | /vis/sceneHandler/create OGL | 
|  | + | /vis/viewer/create ! ! 600x600-0+0 | 
|  | + | libGL error: failed to load driver: swrast | 
|  | + | X Error of failed request:  BadValue (integer parameter out of range for operation) | 
|  | + |   Major opcode of failed request:  150 (GLX) | 
|  | + |   Minor opcode of failed request:  3 (X_GLXCreateContext) | 
|  | + |   Value in failed request:  0x0 | 
|  | + |   Serial number of failed request:  25 | 
|  | + |   Current serial number in output stream:  26 | 
|  | + | </pre> | 
|  |  |  |  | 
| − | Lagranges equations of motion are given by
 |  | 
| − | : <math>\frac{\partial \mathcal{L}}{\partial q} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\dot{q}}</math>
 |  | 
| − | where <math>q</math> represents on of the coordinate (cannonical variables).
 |  | 
|  |  |  |  | 
| − | To get the classical scattering cross section we are interested in finding an expression for the dependence of the impact parameter on the scattering angle,<math>\frac{d b}{d \theta}</math>.  In this case <math>\theta</math> is the C.M. scattering angle so the cross section is calcuated in the C.M. reference Frame.
 |  | 
|  |  |  |  | 
| − | Now lets redraw the collision in terms of the reduced mass in the Lab frame.
 |  | 
|  |  |  |  | 
| − | [[Image:SPIM_ElasCollis_ReducedMass_CM_Frame_1.jpg]]
 |  | 
|  |  |  |  | 
| − | The C.M. Frame rides along the center of mass <math>\mu</math>.  If <math>b > a</math> then there is no collision (<math>\theta=0</math>),  otherwise a collision happens when r=a (the distance between the balls is equal to their diameter).  A head on collision is defined as <math>b=0</math> (<math>\theta=\pi</math>).
 | + | [[TF_SPIM_OLD]] | 
| − |   |  | 
| − | ;Observation
 |  | 
| − | : as <math>\theta</math> gets smaller, <math>b</math> gets bigger
 |  | 
| − | : <math>\frac{d b}{d \theta} < 0</math>
 |  | 
| − |   |  | 
| − | Using plane polar coordinates (<math>R, \phi</math>) we can describe the problem in the lab frame as:
 |  | 
| − |   |  | 
| − | <math>\vec{v} = \dot{R} \hat{e}_R + R \dot{\phi} \hat{e}_{\phi}</math>
 |  | 
| − |   |  | 
| − | <math>T = \frac{1}{2} \mu ( \dot{R}^2 + R^2 \dot{\phi}^2)</math>
 |  | 
| − |   |  | 
| − |   |  | 
| − | <math>U(R) = \left \{  {0 \; R > a \atop \infty \; R \le a} \right .</math>
 |  | 
| − |   |  | 
| − | <math>\mathcal{L} = T -U = \frac{1}{2} \mu ( \dot{R}^2 + R^2 \dot{\phi}^2) - U(R)</math> 
 |  | 
| − |   |  | 
| − | Lagranges Equation of Motion:
 |  | 
| − |   |  | 
| − | <math>\frac{\partial \mathcal {L}}{\partial \phi} = \frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{\phi}}</math>
 |  | 
| − | <math>0 = \frac{d}{d t} [\mu R^2 \dot{\phi}]\Rightarrow</math>  there is a constant of motion ( Constant angular momentum)
 |  | 
| − |   |  | 
| − | <math>\ell \equiv \mu R^2 \dot{\phi} = \vec{R} \times \vec{p} = \vec{R} \times \mu \vec{v} = R^2 \mu \dot{\phi}</math>
 |  | 
| − |   |  | 
| − | substitute <math>\ell</math> into <math>\mathcal{L}</math>
 |  | 
| − |   |  | 
| − | <math>\mathcal{L} = \frac{1}{2} ( \mu  \dot{R}^2 + \frac{\ell}{\mu R^2} ) - U(R)</math>
 |  | 
| − |   |  | 
| − | The two equations above are in terms of <math>R</math> and <math>\phi</math> whereas our goal is to find an expression for <math>\frac{ d b}{ d \theta}</math>.  Since <math>R</math> is related to <math>b</math> and <math>\phi</math> is related to<math> \theta</math> (<math>\theta = \pi - 2\phi</math>; see figure above) we should try and find expressions for <math>d \phi</math> in terms of <math>R(b)</math>
 |  | 
| − |   |  | 
| − | ;Trick
 |  | 
| − | : <math>\dot{\phi} = \frac{d \phi}{d t} = \frac{d \phi}{d R} \frac{d R}{d t}</math>
 |  | 
| − | :<math>\Rightarrow \ell = \mu R^2 \frac{d \phi}{d R} \dot{R}</math>
 |  | 
| − | :or
 |  | 
| − | : <math>d \phi = \frac{\ell}{\mu R^2 \dot{R}} dR</math>
 |  | 
| − |   |  | 
| − | We now need an expression for <math>\dot{R}</math> in order to integrate the above equation to determine the functional dependence of <math>\phi</math> and hence<math> \theta</math>.
 |  | 
| − |   |  | 
| − | Since Energy is conserved (Elastic Scattering), we may define the Hamiltonian as 
 |  | 
| − |   |  | 
| − | <math>H = T + U = \frac{1}{2} (mu \dot{R}^2 + \frac{\ell}{\mu R^2}) + U(R) = constant \equiv E</math>
 |  | 
| − |   |  | 
| − | solving for <math>\dot{R}</math>
 |  | 
| − |   |  | 
| − | <math>\dot{R} = \pm \sqrt{\frac{2(E-U(R))}{\mu} - \frac{\ell^2}{\mu^2 R^2}}</math>
 |  | 
| − |   |  | 
| − | substituting the above into the equation for <math>d \phi</math> and integrating:
 |  | 
| − |   |  | 
| − | <math>\phi = \int d \phi = \int_{r_{min}}^{r_{max}} \frac{\ell}{\mu R^2 \dot{R}} dR</math>
 |  | 
| − |   |  | 
| − | <math>r_{min} = a   \; \; \;  r_{max}= \infty   \; \; \;   U(R) = 0 : a \le R \le \infty</math>
 |  | 
| − |   |  | 
| − | <math>\phi = \int_a}^{r_{\infty}} \frac{\ell} {R^2 \sqrt{2 \mu E - \frac{\ell^2}{R^2}}} dR</math>
 |  | 
| − |   |  | 
| − | ==== Lab Frame Cross Sections ====
 |  | 
| − |   |  | 
| − | == Stopping Power ==
 |  | 
| − | === Bethe Equation ===
 |  | 
| − | ====Classical Energy Loss ====
 |  | 
| − | ====Bethe-Bloch Equation ====
 |  | 
| − | === Energy Straggling ===
 |  | 
| − | ==== Thick Absorber ====
 |  | 
| − | ====Thin Absorbers====
 |  | 
| − | === Range Straggling===
 |  | 
| − | === Electron Capture and Loss ===
 |  | 
| − | === Multiple Scattering ===
 |  | 
| − |   |  | 
| − | == Interactions of Electrons and Photons with Matter==
 |  | 
| − | === Bremsstrahlung===
 |  | 
| − | === Photo-electric effect===
 |  | 
| − | === Compton Scattering ===
 |  | 
| − | === Pair Production ===
 |  | 
| − |   |  | 
| − | == Hadronic Interactions ==
 |  | 
| − | === Neutron Interactions ===
 |  | 
| − | ==== Elastic scattering====
 |  | 
| − |   |  | 
| − | ==== Inelasstic Scattering====
 |  |