Difference between revisions of "Function for change in x', Lab frame"

From New IAC Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<center><math>\textbf{\underline{Navigation}}</math>
+
<center><math>\underline{\textbf{Navigation}}</math>
  
 
[[Test_in_Plane_for_Theta_at_20_degrees_and_Phi_at_1_degree|<math>\vartriangleleft </math>]]
 
[[Test_in_Plane_for_Theta_at_20_degrees_and_Phi_at_1_degree|<math>\vartriangleleft </math>]]
Line 104: Line 104:
  
  
<center><math>\textbf{\underline{Navigation}}</math>
+
----
 +
 
 +
 
 +
<center><math>\underline{\textbf{Navigation}}</math>
  
 
[[Test_in_Plane_for_Theta_at_20_degrees_and_Phi_at_1_degree|<math>\vartriangleleft </math>]]
 
[[Test_in_Plane_for_Theta_at_20_degrees_and_Phi_at_1_degree|<math>\vartriangleleft </math>]]

Latest revision as of 20:28, 15 May 2018

Navigation_

Function for the change in x' in the detector frame for change in ϕ and constant θ in the lab frame

D2P=(xD2xP)2+(yD2yP)2+(zD2zP)2


D1P=(xPxD1)2+(yPyD1)2+(zPzD1)2


x_1^'=\frac{((x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2)-((x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2)}{4ae}-ae
xD1=rD1 cos(ϕ)yD1=rD1cos(ϕ)zD1=rD1cot(θ)


xD2=rD2cos(ϕ)yD2=rD2sin(ϕ)zD2=rD2cot(θ)


xP=2.53cos(ϕ)(cot(θ)+cos(ϕ)cot(65)


yP=2.53sin(ϕ)(cot(θ)+cos(ϕ)cot(65)


zP=2.53cot(θ)(cot(θ)+cos(ϕ)cot(65)


x_1^'=\frac{((x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2)-((x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2)}{4ae}-ae


x_1^'=\frac{x_{D2}^2-2x_Px_{D2}+x_P^2+y_{D2}^2-2y_Py_{D2}+y_P^2+z_{D2}^2-2z_Pz_{D2}+z_P^2-x_P^2+2x_Px_{D1}-x_{D1}^2-y_P^2+2y_Py_{D1}-y_{D1}^2-z_P^2+2z_Pz_{D1}-z_{D1}^2}{4ae}-ae


x_1^'=\frac{(x_{D2}^2+y_{D2}^2)-(x_{D1}^2+y_{D1}^2)+z_{D2}^2-z_{D1}^2-2x_P(x_{D2}-x_{D1})-2y_P(y_{D2}-y_{D1})-2z_P(z_{D2}-z_{D1})}{4ae}-ae


x_1^'=\frac{(r_{D2}^2)-(r_{D1}^2)+cot^2(\theta)(r_{D2}^2-r_{D1}^2)-2x_P(x_{D2}-x_{D1})-2y_P(y_{D2}-y_{D1})-2z_P(z_{D2}-z_{D1})}{4ae}-ae


Expressing this as functions of ϕ and non-differentiable constants


x_1^'=\frac{c_1+c_2-2x_P(\phi)x_{D2}(\phi)+2x_P(\phi)x_{D1}(\phi)-2y_P(\phi)y_{D2}(\phi)+2y_P(\phi)y_{D1}(\phi)-2z_P(\phi)c_3}{4c_4}-c_4

Differentiating with respect to ϕ

xD1=rD1cos(ϕ)˙xD1=rD1sin(ϕ)


yD1=rD1sin(ϕ)˙yD1=rD1cos(ϕ)


xD2=rD2cos(ϕ)˙xD2=rD2sin(ϕ)


yD2=rD2sin(ϕ)˙yD2=rD2cos(ϕ)


xP=2.52934271645cos(ϕ)cot(θ)+cos(ϕ)cot(65)˙xP=2.52934271645cot(θ)sin(ϕ)(cos(ϕ)cot(65+cot(θ))2


yP=2.52934271645sin(ϕ)cot(θ)+cos(ϕ)cot(65)˙yP=1.7206+2.52934271645cos(ϕ)cot(θ)(cos(ϕ)cot(65)+cot(θ))2


zP=2.52934271645cot(θ)cot(θ)+cos(ϕ)cot(65)˙zP=1.7206cot(θ)sin(ϕ))(cos(ϕ)cot(65)+cot(θ))2
dx11dϕ=24c4ddϕ(xP(ϕ)xD2(ϕ))+24c4ddϕ(xP(ϕ)xD1(ϕ))24c4ddϕ(yP(ϕ)yD2(ϕ))+24c4ddϕ(yP(ϕ)yD1(ϕ))2c34c4ddϕzP(ϕ)


dx11dϕ=24c4((˙xP(ϕ)xD2(ϕ)+xP(ϕ)˙xD2(ϕ))(˙xP(ϕ)xD1(ϕ)+xP(ϕ)˙xD1(ϕ))+(˙yP(ϕ)yD2(ϕ)+yP(ϕ)˙yD2(ϕ))(˙yP(ϕ)yD1(ϕ)+yP(ϕ)˙yD1(ϕ))+c3˙zP(ϕ))




Navigation_