Difference between revisions of "The Wires"
Jump to navigation
Jump to search
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | <center><math>\underline{\textbf{Navigation}}</math> | ||
+ | |||
+ | [[Points_of_Intersection|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]] | ||
+ | [[Right_Hand_Wall|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> | ||
+ | |||
+ | |||
We can parametrize the equations for the wires and wire midpoints to express the equation in vector form. In the y'-x' plane the general equation follows the relationship: | We can parametrize the equations for the wires and wire midpoints to express the equation in vector form. In the y'-x' plane the general equation follows the relationship: | ||
− | <center><math>x'=y'\ tan 6^{\circ}+x_0</math></center> | + | <center><math>x'=y'\ tan\ 6^{\circ}+x_0</math></center> |
where <math>x_0</math> is the point where the line crosses the x axis. | where <math>x_0</math> is the point where the line crosses the x axis. | ||
− | <center><math>y' \Rightarrow {y\ tan 6^{\circ}+x_0, y, 0}</math></center> | + | <center><math>y' \Rightarrow {y\ tan\ 6^{\circ}+x_0, y, 0}</math></center> |
In this form we can easily see that the components of x and y , in the y'-x' plane are | In this form we can easily see that the components of x and y , in the y'-x' plane are | ||
− | <center><math>x' = y\ sin 6^{\circ}+x_0</math></center> | + | <center><math>x' = y\ sin\ 6^{\circ}+x_0</math></center> |
− | <center><math>y' = y\ cos 6^{\circ}</math></center> | + | |
+ | |||
+ | <center><math>y' = y\ cos\ 6^{\circ}</math></center> | ||
The parameterization has reduced two equations with two variables, to two equations which depend on one variable. Working in the y-x plane, we will undergo a positive rotation, | The parameterization has reduced two equations with two variables, to two equations which depend on one variable. Working in the y-x plane, we will undergo a positive rotation, | ||
− | |||
− | |||
− | |||
− | ) | + | <center><math>R(\theta_{yx})=\begin{bmatrix} |
+ | cos\ 6^{\circ} &-sin\ 6^{\circ} & 0 \\ | ||
+ | sin\ 6^{\circ} & cos\ 6^{\circ} &0 \\ | ||
+ | 0 &0 & 1 | ||
+ | \end{bmatrix}</math></center> | ||
− | + | <center><math>\begin{bmatrix} | |
− | same vector | + | Components\ of \\ |
− | in new system | + | same\ vector \\ |
− | + | in\ new\ system | |
− | + | \end{bmatrix} | |
− | transformation | + | =\begin{bmatrix} |
+ | Passive \\ | ||
+ | transformation \\ | ||
matrix | matrix | ||
+ | \end{bmatrix}\cdot | ||
+ | \begin{bmatrix} | ||
+ | Components\ of \\ | ||
+ | vector\ in \\ | ||
+ | original\ system | ||
+ | \end{bmatrix}</math></center> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <center><math> | |
− | + | \begin{bmatrix} | |
− | + | x'' \\ | |
− | + | y'' \\ | |
− | |||
− | |||
− | |||
− | |||
− | y'' | ||
z'' | z'' | ||
− | + | \end{bmatrix}= | |
− | + | \begin{bmatrix} | |
− | sin 6\ | + | cos\ 6^{\circ} &-sin\ 6^{\circ} & 0 \\ |
− | 0 0 1 | + | sin\ 6^{\circ} & cos\ 6^{\circ} &0 \\ |
− | + | 0 &0 & 1 | |
− | + | \end{bmatrix}\cdot | |
− | y' | + | \begin{bmatrix} |
+ | x' \\ | ||
+ | y' \\ | ||
z' | z' | ||
+ | \end{bmatrix}</math></center> | ||
+ | |||
− | + | <center><math> | |
− | y' | + | \begin{bmatrix} |
− | z' | + | x'' \\ |
+ | y'' \\ | ||
+ | z'' | ||
+ | \end{bmatrix}= | ||
+ | \begin{bmatrix} | ||
+ | cos\ 6^{\circ} &-sin\ 6^{\circ} & 0 \\ | ||
+ | sin\ 6^{\circ} & cos\ 6^{\circ} &0 \\ | ||
+ | 0 &0 & 1 | ||
+ | \end{bmatrix}\cdot | ||
+ | \begin{bmatrix} | ||
+ | y'\ sin\ 6^{\circ}+x_0 \\ | ||
+ | y'\ cos\ 6^{\circ} \\ | ||
+ | 0 | ||
+ | \end{bmatrix}</math></center> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <center><math> | |
− | + | \begin{bmatrix} | |
− | + | x'' \\ | |
− | y'' | + | y'' \\ |
z'' | z'' | ||
+ | \end{bmatrix}= | ||
+ | \begin{bmatrix} | ||
+ | -y'\ cos\ 6^{\circ}sin\ 6^{\circ}+x_0\ cos\ 6^{\circ} +y'\ cos\ 6^{\circ}sin\ 6^{\circ}\\ | ||
+ | y'\ cos^2 6^{\circ}+x_0\sin\ 6^{\circ}+y sin^2 6^{\circ} \\ | ||
+ | 0 | ||
+ | \end{bmatrix}</math></center> | ||
+ | |||
− | |||
− | |||
− | |||
− | + | <center><math> | |
− | y | + | \begin{bmatrix} |
+ | x'' \\ | ||
+ | y'' \\ | ||
+ | z'' | ||
+ | \end{bmatrix}= | ||
+ | \begin{bmatrix} | ||
+ | x_0\ cos\ 6^{\circ}\\ | ||
+ | y'\ +x_0\sin\ 6^{\circ} \\ | ||
0 | 0 | ||
+ | \end{bmatrix}</math></center> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | This relationship shows us that x'' is a constant in this frame while y'' can have any value, which is the horizontal line with respect to the y axis as expected. | |
− | + | ||
− | |||
− | + | ---- | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <center><math>\underline{\textbf{Navigation}}</math> | |
− | |||
− | |||
− | |||
− | |||
− | + | [[Points_of_Intersection|<math>\vartriangleleft </math>]] | |
− | + | [[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]] | |
− | + | [[Right_Hand_Wall|<math>\vartriangleright </math>]] | |
− | + | </center> |
Latest revision as of 20:32, 15 May 2018
We can parametrize the equations for the wires and wire midpoints to express the equation in vector form. In the y'-x' plane the general equation follows the relationship:
where
is the point where the line crosses the x axis.
In this form we can easily see that the components of x and y , in the y'-x' plane are
The parameterization has reduced two equations with two variables, to two equations which depend on one variable. Working in the y-x plane, we will undergo a positive rotation,
This relationship shows us that x is a constant in this frame while y can have any value, which is the horizontal line with respect to the y axis as expected.