Difference between revisions of "Circular Cross Sections"
Jump to navigation
Jump to search
(Created page with "==Circular Conic Section== If the conic is an circle, e=0. This implies <center><math>e=\frac{\sin (\beta)}{\sin (\alpha)}=\frac{\sin (25^{\circ})}{\sin (90-\theta)}=0</math><…") |
|||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | <center><math>\underline{\textbf{Navigation}}</math> | ||
+ | |||
+ | [[Conic_Sections|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]] | ||
+ | [[Elliptical_Cross_Sections|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> | ||
+ | |||
==Circular Conic Section== | ==Circular Conic Section== | ||
If the conic is an circle, e=0. This implies | If the conic is an circle, e=0. This implies | ||
Line 8: | Line 16: | ||
<center><math>sin(90^{\circ}-\theta)=cos(\theta)</math></center> | <center><math>sin(90^{\circ}-\theta)=cos(\theta)</math></center> | ||
+ | |||
<center><math>\frac{sin (25^{\circ})}{0}=cos( \theta) =\infty</math></center> | <center><math>\frac{sin (25^{\circ})}{0}=cos( \theta) =\infty</math></center> | ||
Line 13: | Line 22: | ||
The sector angle will never be perpendicular to the plane of the light cone, so this is not a physical possibility. | The sector angle will never be perpendicular to the plane of the light cone, so this is not a physical possibility. | ||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | |||
+ | <center><math>\underline{\textbf{Navigation}}</math> | ||
+ | |||
+ | [[Conic_Sections|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]] | ||
+ | [[Elliptical_Cross_Sections|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> |