Difference between revisions of "Forest UCM RBM"

From New IAC Wiki
Jump to navigation Jump to search
Line 635: Line 635:
 
therefor  
 
therefor  
  
:<math>\hat e_1 = \frac{1}{sqrt{3}} \left ( \right )</math>  
+
:<math>\hat e_1 = \frac{1}{\sqrt{3}} \left ( \hat i + \hat j + \hat k\right )</math>  
  
 
[[Forest_Ugrad_ClassicalMechanics#Rigid_Body_Motion]]
 
[[Forest_Ugrad_ClassicalMechanics#Rigid_Body_Motion]]

Revision as of 13:46, 9 December 2014

Rigid Body Motion

Rigid Body

Rigidy Body
A Rigid Body is a system involving a large number of point masses, called particles, whose distances between pairs of point particles remains constant even when the body is in motion or being acted upon by external force.
Forces of Constraint
The internal forces that maintain the constant distances between the different pairs of point masses.

Total Angular Momentum of a Rigid Body

Consider a rigid body that rotates about a fixed z-axis with the origin at point O.


RB fig1 Forest UCM RBM.png


let

R point to the center of mass of the object
rk points to a mass element mk
rk points from the center of mass to the mass element mk

the angular momentum of mass element mk about the point O is given as

k=rk×pk=rk×m˙rk

The total angular momentum about the point O is given as

L=k=rk×mk˙rk

This can be cast in term of the angular momentum about the center of mass and the angular momentum of the CM motion

rk=R+rk
L=rk×mk˙rk
= \sum (\vec R + \vec{r}_k^{\;\; \prime}) \times m_k (\vec \dot R + \vec{\dot r}_k^{\;\; \prime})
= \sum \vec R \times m_k \vec \dot R  + \sum \vec R \times m_k  \vec{\dot r}_k^{\;\; \prime} + \sum \vec{r}_k^{\;\; \prime} \times m_k \vec \dot R  +\sum \vec{r}_k^{\;\; \prime} \times m_k \vec{\dot r}_k^{\;\; \prime}


\sum \vec R \times m_k \vec \dot R =  \vec R \times \sum m_k \vec \dot R =  \vec R \times M \vec \dot R = \vec R \times \vec P
P= momentum of the center of Mass
R×mk˙rk=R×mk˙rk
mk˙rk=mk(rkR)=mkrkmkR=vcmvcm=0
The location of the center of mass is at rk=0 the derivative is also zero
\sum \vec{r}_k^{\;\; \prime} \times m_k \vec \dot R  = \sum m_k \vec{r}_k^{\;\; \prime} \times  \vec \dot R =0 : The location of the CM is at 0


L=R×P+rk×mk˙rk
=LCM+Labout CM

The total angular momentum is the sum of the angular momentum of the center of mass of a rigid body LCM and the angular momentum of the rigid body about the center of mass Labout CM

Planet example

What is the total angular momentum of the earth orbiting the sun?

There are two components

LCM = angular momentum of the earth orbiting about the sun
Labout CM = angular momentum of the earth orbiting about the earth's center of mass (Spin)


Ltot=LCM+Labout CM
LCM is conserved and defined as Orbital angular momentum
\vec \dot L_{\mbox{CM}} = \vec \dot R \times \vec P + \vec R \times \vec \dot P
\vec \dot R \times \vec P = \vec V \times M \vec V = 0
\Rightarrow \vec \dot L_{\mbox{orb}} =  \vec R \times \vec \dot P=\vec R \times \vec {F}_{ext}

If there is only a central force

F(ext)=GMmR3R


Then

R×F(ext)=R×GMmR3R=GMmR3R×R=0

Thus

\vec \dot L_{\mbox{CM}} =  \vec R \times \vec {F}(\mbox{ext}) = 0
LCMLOrb = constant = Orbital angular momentum


The above is a good approximation even though the Sun's gravitational Field is not perfectly uniform


How about Labout CM?

Since

Ltot=rk×mk˙rk=LOrb+Labout CM

as seen earlier

L=rk×mk˙rk
= \sum (\vec R + \vec{r}_k^{\;\; \prime}) \times m_k (\vec \dot R + \vec{\dot r}_k^{\;\; \prime})
=R×P+rk×mk˙rk

Then

\dot \vec L = \vec \dot R \times \vec P +\vec  R \times \vec \dot P +  \sum \vec{\dot r}_k^{\;\; \prime} \times m_k \vec{\dot r}_k^{\;\; \prime} + \sum \vec{r}_k^{\;\; \prime} \times m_k \vec{\ddot r}_k^{\;\; \prime}
=\vec  R \times \vec \dot P + \sum \vec{r}_k^{\;\; \prime} \times m_k \vec{\ddot r}_k^{\;\; \prime}
=R×F(ext)+rk×mk¨rk
=˙LOrv+˙Labout CM
˙Labout CM=rk×mk¨rk
˙Lspin˙Labout CM=rk×mk¨rkτ(ext about CM)


The total angular momentum is the sum of the orbital angular momentum and the spin

Ltot=Lorb+Lspin
Precession of the Earth

http://courses.physics.northwestern.edu/Phyx125/Precession%20of%20the%20Earth.pdf

Total Kinetic energy of a Rigid Body

Using the same coordinate system as above


the kinetic energy of mass element mk about the point O is given as

T_k = \frac{1}{2} m_k \left | \vec \dot{r}_k \right |^2

The total Kinetic about the point O is given as

\vec T = \sum \frac{1}{2} m_k \left | \vec \dot{r}_k \right |^2


Rewriting this again in terms of the location of the CM of the body R and the location of a mass element from the CM rk

rk=R+rk
\vec {\dot r}_k = \vec \dot R + \vec{\dot r}_k^{\;\; \prime}
\vec {\dot r}_k \cdot \vec {\dot r}_k = \left ( \vec \dot R + \vec{\dot r}_k^{\;\; \prime} \right ) \cdot \left ( \vec \dot R + \vec{\dot r}_k^{\;\; \prime} \right )
= \left | \vec \dot R  \right |^2 + \left | \vec{\dot r}_k^{\;\; \prime} \right |^2   + 2  \vec \dot R \cdot \vec{\dot r}_k^{\;\; \prime}
\vec T = \sum \frac{1}{2} m_k \left | \vec \dot{r}_k \right |^2
= \sum \frac{1}{2} m_k \left | \vec \dot R  \right |^2 + \left | \vec{\dot r}_k^{\;\; \prime} \right |^2   + 2  \vec \dot R \cdot \vec{\dot r}_k^{\;\; \prime}
=  \frac{1}{2} M \left | \vec \dot R  \right |^2 + \frac{1}{2} \sum m_k \left | \vec{\dot r}_k^{\;\; \prime} \right |^2   +  \vec \dot R \cdot \sum m_k   \vec{\dot r}_k^{\;\; \prime}

For a Rigid body

mk˙rk=0 The internal kinetic energy is zero for a rigid body, otherwise it would be expanding


\vec T =   \frac{1}{2} M \left | \vec \dot R  \right |^2 + \frac{1}{2} \sum m_k \left | \vec{\dot r}_k^{\;\; \prime} \right |^2 \cdot
=TCM+Tabout CM


Total Potential energy of a Rigid Body

If all forces are conservative

×Fij=0

then a Potential Energy may be defined

ΔUij(rij)rroFij(rij)drij=Wcons

Then the potential energy of a rigid body is given by

i<jΔUij(rij)=Uint= constant

for a rigid body the inter-particle separation distance rij is constant so the internal potential of a rigid body does not change

Thus the kinematics of a Rigid body only needs to consider the potential energy of external forces.

Rotation about a fixed axis

Consider a Rigid body rotating with a speed ω about a fixed axis (z-axis) with its origin at the point O

ω=ωˆk

The total angular momentum about the point O is given as

L=k=rk×mk˙rk

As seen in the non-inertial reference frame chapter

\vec \dot r = \vec v = \vec \omega \times \vec r

thus

ω×rk=(ˆiˆjˆk00ωxkykzk)=ω(ykˆi+xkˆj)


rk×˙rk=rk×ω×r=rk×ω(ykˆi+xkˆj)
=(ˆiˆjˆkxkykzkωykωxk0)=ω(zkxkˆizkykˆj+(x2k+y2k)ˆk)


L=k=rk×mk˙rk
=ωmk(zkxkˆizkykˆj+(x2k+y2k)ˆk)

Moments (Products) of Inertia about the fixed axis

As seen above, the angular momentum of a rigid body rotating about a fixed axis ( the z-axis in this case) is given by


L=k=rk×mk˙rk
=ωmk(zkxkˆizkykˆj+(x2k+y2k)ˆk)


Although the object was only rotating about the z-axis, there can be angular momentum components along the other directions


In other words, unlike what you learned in introductory physics

LIω in general

instead the general expression for angular momentum is

L=r×p is the more general statement

The Moment of Inertia is the inertia of the rotating body for the angular momentum that is parallel to the angular velocity The other components of the angular momentum that are not along the direction of the angular velocity related to the angular velocity by the Product of Inertia


The Moment of Inertia for the above example is defined as

Lz=ωmk(x2k+y2k)

Let

Izzmk(x2k+y2k)= moment of inertia about the z-axis in the "z" (ˆk) direction.

Then

Lz=Izzω

Similarly

The product of Inertia of a rigid body rotating about the z-axis for the angular momentum component along the x-axis is given by

Ixzmk(xkzk)


The product of Inertia of a rigid body rotating about the z-axis for the angular momentum component along the y-axis

Iyzmk(ykzk))
Note the negative sign is indicative of the rigid body's resistance (inertia) to have an angular momentum component that is not in the same direction as its rotation.


L=ω(Ixzˆi+Iyzˆk+Izzˆk) = angular momentum about the z-axis
Example
Moment of Inertia of a sphere

Find the moment of inertia of a uniform solid sphere of Radius (R) and mass (M) about its diameter.

Using a coordinate system with its origin at the center of the sphere

For a set of discrete masses

Izzmk(x2k+y2k)= moment of inertia about the z-axis in the "z" (ˆk) direction.

For a mass distribution the above summation is written in integral form as

Izz=dmk(x2k+y2k)


one may define the sphere's density as

ρ=M43πR3

A differential mass is written as

dmk=ρdVk= Imagine a differential circle in the x-y plane that you integrate along z

if using spherical coordinates

xk=rsinθcosϕyk=rsinθsinϕ
x2k+y2k=r2sin2θ
Izz=dmk(x2k+y2k)
=ρr2dVk=ρ(rsinθ)2dVk=ρr2sin2θ(r2drsinθdθdϕ)
=ρR0r4drπ0sin3θdθ2π0dϕ
=8π15ρR5=25MR2


dV=r2drsinθdθdϕ
The moment of Inertia of a hollow sphere of outer radius b and inner radius a

Moments of Inertia, like masses, add and subtract like scalers.

I(b,a)=I(b,0)I(a,o)=8π15ρ(b5a5) = Moment of inertia of a sphere of inner radius a and outer radius b.
ρ=MV=M4π3(b3a3)
I(b,a)=25M(b5a5)(b3a3) = Moment of inertia of a sphere of inner radius a and outer radius b.

Moment of inertia tensor

The angular momentum for a body spinning about an arbitrary axis.

let

ω=ωxˆi+ωyˆj+ωzˆk


Consider a Rigid body rotating with a speed ω about a fixed axis (z-axis) with its origin at the point O

ω=ωˆk

The total angular momentum about the point O is given as

L=k=rk×mk˙rk=mk[rk×˙rk]

As seen in the non-inertial reference frame chapter

\vec \dot r = \vec v = \vec \omega \times \vec r

thus

ω×rk=(ˆiˆjˆkωxωyωzxkykzk)=(ωyzkωzyk)ˆi+(ωzxkωxzk)ˆj+(ωxykωyxk)ˆk


rk×˙rk=rk×ω×r=rk×ω(ykˆi+xkˆj)
=(ˆiˆjˆkxkykzk(ωyzkωzyk)(ωzxkωxzk)(ωxykωyxk))


Lx=mk[rk×m˙rk|x]
=mk[yk(ωxykωyxk)zk(ωzxkωxzk)]
=mk[(y2k+z2k)ωxykxkωyzkxkωz]
Ly=mk[rk×m˙rk|y]
=mk[zk(ωyzkωzyk)xk(ωxykωyxk)]
=mk[xkykωx+(z2k+x2k)ωyzkykωz]
Lz=mk[rk×m˙rk|z]
=mk[xk(ωzxkωxzk)yk(ωyzkωzyk)]
=mk[xkzkωxykzkωy+(x2k+y2k)ωz]


The Moment of Inertia tensor is defined such that
˜I=(mk(y2k+z2k)mkykxkmkzkxkmkxkykmk(z2k+x2k)mkzkykmkxkzkmkykzkmk(x2k+y2k))


L=˜IωorLi=3j=1Iijωj
The diagonals of the moment of inertia tensor are the usual moments of inertia
The off-diagonals are the six products of inertia


Iij=αmαiαjα where i & j represent x,y,z components and ij
Iii=αmαjαkα where j & k represent x,y,z components and ijk
Note
˜I=˜IT The inertia tensor is symmetric ( i.e. it is it's own transpose) or in other words
Iij=Iji


In other words the product of inertia of a body rotating about the i axis for the angular momentum along the j axis is the same as
the product of inertia of a body rotating about the j axis for the angular momentum about the i axis


Inertia Tensor for a solid cone

RB I Cone Forest UCM RBM.png

Find the moment of inertia tensor for a uniform solid cone of mass M , height h , and base radius R spinning about its tip.

Choose the z-axis so it is along the symmetry axis of the cone.

The mass density may be written as

ρ=MV

Using cylindrical coordinates ( r,ϕ,z) the volume of a cone is given by

V=h0dz2π0dϕRzh0rdr=h0dz2π0dϕR2z22h2=2πR22h2h0z2dz
=πR2h2h33=13πR2h

the radius of the base of the cone may be written as a function such that r=Rzh .

When z=0r=0 and when z=hr=R

ρ=MV=M13πR2h=3MπR2h

calculating the moment of inertia about the z-axis :

Izz=ρ(x2+y2)dV=h02πoRzh0ρr2rdrdϕdz


Izz=ρh0dz2π0dϕRzh0r2rdr
=ρh0dz(2π)R4z44h4
=2πρR44h4h0z4dz
=2πρR44h4h55
=2π(3MπR2h)R44h4h55
=3MR22h5h55=310MR2


Ixx=ρ(z2+y2)dV=ρz2dV+ρy2dV


Since

Izz=ρ(x2+y2)dV

and the cone is symmetric in the x-y plane

ρy2dV=12I+zz
ρz2dV=ρh0z2dz2π0dϕRzh0rdr=2πρh0z2dzR2z22h2
=πρR2h2h0z4dz=πρR2h2h55
=π(3MπR2h)fracR2h35=3Mh25
Ixx=320MR2+3Mh25


Iyy=ρ(z2+x2)dV=320MR2+3Mh25=320M(R2+4h2)=Ixx

The products of inertia

Product of Inertia of a rigid body that relates the x(y) component of the angular momentum for rotations about the y(x)-axis

Ixymk(xkyk)=ρxydV

From the viewpoint of the summation equation one can see that for every mass at point (x,z) there is an equal mass at the point (-x,z), Thus the sum will add to zero.

or mathematically

Ixy=ρxydV=h0dz2π0dϕRzh0rdrρxy=h0dz2π0dϕRzh0rdrρ(rcosϕ)(rsinϕ)
=ρh0dz2π0dϕcosϕsinϕRzh0r3dr
2π0dϕcosϕsinϕ=2π0sinϕd(sinϕ)=12sin2ϕ|2π0=0


Product of Inertia of a rigid body that relates the x(z) component of the angular momentum for rotations about the z(x)-axis

Ixzmk(xkyk)=ρxzdV
=h0dz2π0dϕRzh0rdrρrcosϕz=ρh0zdz2π0cosϕdϕRzh0r2dr

Product of Inertia of a rigid body that relates the y(z) component of the angular momentum for rotations about the y(x)-axis

Iyzmk(ykzk)
=ρyzdV=h0dz2π0dϕRzh0rdrρrsinϕz=ρh0zdz2π0sinϕdϕRzh0r2dr


2π0sinϕdϕ=2π0cosϕdϕ=0


If the inertia tensor is diagonal (off diagnonal elements are zero)

Then The angular momentum points in the same direction as the angular velocity.

I=320M(R2+4h2000R2+4h20002R2)


http://scienceworld.wolfram.com/physics/MomentofInertiaSphere.html

http://www.phys.ufl.edu/~mueller/PHY2048/2048_Chapter10_F08_Part2_lecture.pdf

Precession of a Top

As shown above,the angular momentum tensor of a top rotating about its axis of symmetry with respect to its tip is

I=320M(R2+4h2000R2+4h20002R2)(λ1000λ2000λ3)



RB PrecTop Forest UCM RBM.png

Suppose the top make a small angle θ with respect to the normal of the surface it is spinning on top of.

F=Mgˆk

The resulting torque from this gravitational force is

\vec \tau = \vec R \times M \vec g = \vec \dot L \;\;\;\; \Rightarrow  \;\;\;\; \left | \vec \tau \right | = Mg \sin \theta

where R is a vector pointing to top's center of mass from the principal axes that make up a coordinate system whose origin is at the tip of the top

R=Rˆk
g=gˆz ( ˆz points normal to the surface that the top is spinning on)


Initially the angular velocity ( and angular momentum) are pointed along the ˆk principal axis.

L=λ2ωˆk

Newton's second law for the angular motion

\vec \tau = \vec \dot L
\vec R \times M \vec g = \lambda_2 \omega \hat \dot k
R \hat k  \times M g \hat z  = \lambda_2 \omega \hat \dot k
\frac{MgR}{\lambda_2 \omega} \hat k  \times \hat z  =  \hat \dot k

Let

Ω=MgRλ2ωˆk = precession frequency of the top

The axis of the top ˆk rotates with an angular speed Ω about the ˆz axis.

The direction of the external torque R×g is in the ˆi direction at the instant shown in the above figure. As a result the top will rotate in the counter-clockwise direction about the z-axis as viewed from above the z-axis.

Principal Axis

As seen in the case of a precessing top above, the physics of a rotating rigid body can be more easily described when the inertia tensor is diagonal. One need only find a coordinate system in which the tensor is diagonal in order to simplify the problem.

Principal axis
The axis of rotation for a rigid body in which the moment of inertia tensor is diagonal thereby the Angular momentum will be parallel to the angular velocity.

In the above example of the top ( solid cone), the x,y, and z axes of the chosen coordinate system are principal axes of inertia and the moments of inertia are the principal moments.

One can observe from the example of a spinning top, that a rotation axis around which the rigid body is symmetry will tend to be a principal axis.

Additionally, if the body has two perpendicular planes of reflection symmetry, then the three perpendicular axes defined by these two planes and a point of rotation are principal axes.

Existence of Principal Axes

Although it is easy to see which are the principal axes when the rigid body is symmetric, it is true that any rigid body's rotating about a point has three principal axes.

Finding the Principal axis of a Rigid body

Once the Inertia tensor is known, the principal axes of a rigid body may be found by "diagonalizing" the tensor matrix.

The process of "diagonalizing" the tensor matrix amounts to solving an eigenvalue problem.

The angular momentum of a rigid body can be given by

L=˜Iω

For the special case that the angular momentum (\vec L) is parallel to the angular velocity (\vec \omega)

Then

L=λω


To determine the principal axes you determine the vector omega such that

˜Iω=λω

In practice, one determines ω ( the eigen vectors) by solving for λ (the eigenvalues) such that

(˜Iλ˜1)ω=0

where

˜1(100010001) = unit matrix

In order for the above matrix problem (system of 3 equations and 3 unknowns) to have a non-zero solution the secular equation must hold ( the determinant must be non-zero)

det(˜Iλ˜1)|˜Iλ˜1|=0

One solves the above equation by first finding the three eigenvalues that will make the above determinant zero and then use Gauss-Jordan elimination of the augmented matrix using each of the eigenvalues separately to find the eigenvector for that particular eigenvalue

For example:


Suppose the momentum tensor is given by

˜I(833383338)


|˜Iλ˜1|=0
|8λ3338λ3338λ|=0

(2λ)(11λ)2=0


3 solutions λ1=2λ2=λ3=11

You can find the eigenvector for each eigenvalue by performing Gauss-Jordan row-column reduction of the augmented matrix

for the eigenvalue λ1=2
(˜I2˜1)ω=0
(823338233382)ω=0
(633363336)ω=0

In augmented form:

(633036303360)

Divide everything by 3

(211012101120)

Add the second row to the first row

(112012101120)

Add the first row to the second and third row

(112003300000)

Divide the second row by 3

(112001100000)

Subtract the first row by the second row

(101001100000)

The above augmented matrix represents the following system of equations

row 1 : ωxωz=0

row 2 : ωyωz=0

row 1 : 0ωz=0ω3 is arbitary

thus

ωx=ωy=ωz


ˆe1=ˆi+ˆj+ˆk

but the above needs to be a unit vector such that

ˆe1ˆe1=1

therefor

ˆe1=13(ˆi+ˆj+ˆk)

Forest_Ugrad_ClassicalMechanics#Rigid_Body_Motion