Difference between revisions of "Forest Bhabha Scattering"
Jump to navigation
Jump to search
Line 23: | Line 23: | ||
:<math>\bar{u}_4 \equiv</math> finial positron spinor | :<math>\bar{u}_4 \equiv</math> finial positron spinor | ||
− | =Matrix element for | + | =Matrix element for scattering= |
<math>\mathcal{M_s} = \,</math> | <math>\mathcal{M_s} = \,</math> | ||
− | <math>e^2 \left( \bar{u}_{ | + | <math>e^2 \left( \bar{u}_{3} \gamma^\nu u_1 \right) \frac{1}{(p_1+p_3)^2} \left( \bar{u}_{2} \gamma_\nu u_{4} \right) </math> |
=Matrix element for annihilation= | =Matrix element for annihilation= |
Revision as of 04:55, 13 April 2012
Bhabha (electron -positron) Scattering
Bhabha scattering identifies the scatterng of an electron and positron (particle and anti-particle). There are two processes that can occur
1.) scattering via the exchange of a virtual photon
2.) annihilation in which the e+ and e- spend some time as a photon which then reconverts back to an e+e- pair
variables
Let:
- initial electron 4-momentum
- u_1 \equiv initial electron spinor
- p_2 \equiv final electron 4-momentum
- u_2 \equiv final electron spinor
- p_3 \equiv initial positron 4-momentum
- \bar{u}_3 \equiv initial positron spinor
- p_4 \equiv finial positron 4-momentum
- finial positron spinor
Matrix element for scattering
Matrix element for annihilation