Difference between revisions of "Neutron Polarimeter"
Line 123: | Line 123: | ||
− | =<math>\Theta dependence</math> | + | =<math>\Theta</math> dependence= |
+ | |||
+ | Starting from general kinematic relations: | ||
+ | |||
+ | <math> m_p^2 = m_D^2 + m_n^2 + 2T_{\gamma}\cdot m_D - 2m_D\cdot E_n - 2\left( T_{\gamma}E_n - T_{\gamma}p_n\cos\Theta_n\right) </math> | ||
+ | |||
+ | we can solve the equation above with respect to <math>T_{/gamma}</math> as function of neutron energy <math>T_n</math> and neutron angle <math>\Theta_n</math> | ||
Revision as of 03:43, 12 April 2011
Four-vector Algebra
Consider two bode reaction
:
Write down four-momentum vectors before and after reaction:
Now apply the law of conservation of four-momentum vectors:
Squaring both side of equation above and using the four-momentum invariants
we have:
Detector located at case
Detector is located at
, and the formula above is simplified:
We can easily solve the equation above with respect to incident photon energy:
For non-relativistic neutrons and the formula above is become:
Substituting the corresponding masses, we get finally:
and visa versa:
Here I derived the formula [2] just inversing the formula [1]. I can as well start from exact solution above, solve this equation with respect to neutron energy, do the non-relativistic approximation and get exactly the same formula [2]. But anyway we ended up with two useful non-relativistic formulas we can analyze now:
1) from formula [1] above we can predict the threshold of reaction in direction:
comment: it's not true because by momentum conservation there are no neutron with zero kinetic energy.
2) from formula [1] above we can predict the incident photon energy based on the detected neutron energy (neutron polarimeter).
3) from formula [2] above we can predict the detected neutron energy based on the incident photon energy.
- for the incident photons up towe can detect neutrons up to
- for the incident photons up towe can detect neutrons up to
4) we can do the error calculations.
Example of error calculation
example 1
Say, we have, 10 MeV neutron with uncertainty 1 MeV, the corresponding uncertainly for photons energy is:
example 2
In the calculations below I attempted to predict the uncertainty in photons energy based on uncertainty in neutrons time of flight.
The neutron kinetic energy as function of time of flight is:
By taking derivative of the expression above we can find the relative error for neutron energy:
In that formula for
we need to know the neutron time of flight which is:
And now we can calculate the relative error for photon energy using the formula derived before:
Say, the detector is 1.5 m away and neutron's time of flight uncertainty is:
In the table below are presented some calculation results using the formulas above:
And in the plot below I have overlay my error calculations using the formulas above:
dependence
Starting from general kinematic relations:
we can solve the equation above with respect to
as function of neutron energy and neutron angle