Difference between revisions of "Neutron Polarimeter"
Line 94: | Line 94: | ||
<math>\delta T_n \left(\delta t\right) = -\ \frac{m\ l^2}{\left(1-\left(\frac{l}{c\ t}\right)^2\right)^{3/2}c^2 t^3} \cdot \delta t</math> | <math>\delta T_n \left(\delta t\right) = -\ \frac{m\ l^2}{\left(1-\left(\frac{l}{c\ t}\right)^2\right)^{3/2}c^2 t^3} \cdot \delta t</math> | ||
− | In | + | In that formula for <math>\delta T_n</math> we need to know the neutron time of flight which is: |
<math>t:=\frac{l}{c\ \beta_n} = \frac{l}{c\ (p_n/E_n)} = | <math>t:=\frac{l}{c\ \beta_n} = \frac{l}{c\ (p_n/E_n)} = | ||
Line 102: | Line 102: | ||
And now we can calculate the relative error for photon energy using the formula derived before: | And now we can calculate the relative error for photon energy using the formula derived before: | ||
− | <math>T_{\gamma} | + | <math>\delta T_{\gamma} = 2.003\ \delta T_</math> |
Revision as of 06:41, 6 April 2011
Four-vector Algebra
Consider two bode reaction
:
Write down four-momentum vectors before and after reaction:
Now apply the law of conservation of four-momentum vectors:
Squaring both side of equation above and using the four-momentum invariants
we have:
Detector located at case
Detector is located at
, and the formula above is simplified:
We can easily solve the equation above with respect to incident photon energy:
For non-relativistic neutrons and the formula above is become:
Substituting the corresponding masses, we get finally:
and visa versa:
Here I derived the formula [2] just inversing the formula [1]. I can as well start from exact solution above, solve this equation with respect to neutron energy, do the non-relativistic approximation and get exactly the same formula [2]. But anyway we ended up with two useful non-relativistic formulas we can analyze now:
1) from formula [1] above we can predict the threshold of reaction in direction:
2) from formula [1] above we can predict the incident photon energy based on the detected neutron energy (neutron polarimeter).
3) from formula [2] above we can predict the detected neutron energy based on the incident photon energy.
- for the incident photons up towe can detect neutrons up to
- for the incident photons up towe can detect neutrons up to
4) we can do the error calculations.
Example of error calculation
example 1
Say, we have, 10 MeV neutron with uncertainty 1 MeV, the corresponding uncertainly for photons energy is:
example 2
In the calculations below I attempted to predict the uncertainty in photons energy based on uncertainty in neutrons time of flight.
The neutron kinetic energy as function of time of flight is:
By taking derivative of the expression above we can find the relative error for neutron energy:
In that formula for
we need to know the neutron time of flight which is:
And now we can calculate the relative error for photon energy using the formula derived before:
Say, the detector is 1.5 m away and neutron's time of flight uncertainty is:
In the table below are presented some calculation results using the formulas above:
And in the plot below I have overlay my error calculations using the formulas above: