Difference between revisions of "Neutron Polarimeter"

From New IAC Wiki
Jump to navigation Jump to search
Line 76: Line 76:
  
 
  1) <math>T = m(\gamma - 1)</math>
 
  1) <math>T = m(\gamma - 1)</math>
  2) <math>\frac{1}{\sqrt{1-(\beta /c)^2}}</math>
+
  2) <math>\gamma = \frac{1}{\sqrt{1-(\beta /c)^2}}</math>
  3) <math></math>  
+
  3) <math>\beta = \frac{v}{c} = frac{l}{c\ v}</math>  
  
  
 
[http://wiki.iac.isu.edu/index.php/PhotoFission_with_Polarized_Photons_from_HRRL Go Back]
 
[http://wiki.iac.isu.edu/index.php/PhotoFission_with_Polarized_Photons_from_HRRL Go Back]

Revision as of 21:01, 16 June 2010

Go Back


Analysis of energy dependence [math]T_{\gamma}\left( T_n\right)[/math]

four-vectors algebra

Collision.png
[math] E = T + m[/math]
[math] E = p^2 + m^2[/math]
writing four-vectors:
[math] p_{\gamma} = \left( T_{\gamma},\ T_{\gamma},\ 0,\ 0 \right) [/math] [math] p_D = \left( m_D,\ 0,\ 0,\ 0 \right) [/math] [math] p_{n} = \left( E_n,\ p_n\cos(\Theta_n),\ p_n\sin(\Theta_n),\ 0 \right) [/math] [math] p_{p} = \left( E_p,\ p_p\cos(\Theta_p),\ p_p\sin(\Theta_p),\ 0 \right) [/math]


Doing four-vector algebra:
[math] p^{\mu}_{\gamma} + p^{\mu}_D = p^{\mu}_p + p^{\mu}_n \Rightarrow [/math]
[math] p^{\mu\ 2}_p = \left(p^{\mu}_{\gamma} + p^{\mu}_D - p^{\mu}_n\right)^2 = p^{\mu\ 2}_{\gamma} + p^{\mu\ 2}_D + p^{\mu\ 2}_n + 2\ p^{\mu}_{\gamma}\ p^{\mu}_D - 2\ p^{\mu}_{\gamma}\ p^{\mu}_n - 2\ p^{\mu}_D\ p^{\mu}_n [/math]
[math] m_p^2 - m_{\gamma}^2(=0) - m_D^2 - m_n^2 = [/math]
[math] = 2\ T_{\gamma}\ m_D - 2\left( T_{\gamma}\ E_n - T_{\gamma}\ p_n\cos(\Theta_n)\right) - 2\ m_D\ E_n [/math]
[math] = 2\ T_{\gamma}\left( m_D - E_n + p_n\cos(\Theta_n) \right) - 2\ m_D\ E_n [/math]

Detector is located at [math]\Theta_n = 90^o[/math], so

[math] T_{\gamma} = \frac {2\ m_D\ E_n + m_p^2 - m_D^2 - m_n^2} {2\left( m_D - E_n \right)} =
                     \frac {2\ m_D\ (T_n + m_n) + m_p^2 - m_D^2 - m_n^2} {2\left( m_D - (T_n + m_n) \right)}[/math]

and visa versa

 [math] T_n = \frac {2\ T_{\gamma}\ m_D + m_D^2 + m_n^2 - m_p^2} {2\left( T_{\gamma} + m_D \right)} - m_n[/math]

how it looks

Kinetic energy 0 900 MeV.jpeg Kinetic energy 0 21 MeV.jpeg

low energy approximation

As we can see from Fig.2 for low energy neutrons (0-21 MeV)
energy dependence of incident photons is linear
Find that dependence. We have:
[math] T_{\gamma}(0\ MeV) = 1.715360792\ MeV [/math] [math] T_{\gamma}(21\ MeV) = 44.78703086\ MeV [/math]
So, the equation of the line is:
[math] T_{\gamma} = \frac{T_{\gamma}(21\ MeV) - T_{\gamma}(0\ MeV)}{21\ MeV - 0\ MeV}\ T_n + T_{\gamma}(0\ MeV) [/math]
Finally for low energy neutrons (0-21 MeV):
[math] T_{\gamma} = 2.051\ T_n + 1.715 [/math]

example of error analysis

1 MeV uncertainty in kinetic energy of neutron</math>

Say, we have, 10 MeV neutron with uncertainty 1 MeV, the corresponding uncertainly for photons energy is:

[math] \delta T_{\gamma} = 2.051\ \delta T_n = 2.051\times 1\ MeV = 2.051\ MeV [/math]

1 ns uncertainty in time of flight of neutron

Say, we have:

the detector is 1 meter away
time of flight uncertainly is 1 ns 

we need the connection between time of flight and kinetic energy of neutron.

1) [math]T = m(\gamma - 1)[/math]
2) [math]\gamma = \frac{1}{\sqrt{1-(\beta /c)^2}}[/math]
3) [math]\beta = \frac{v}{c} = frac{l}{c\ v}[/math] 


Go Back