Difference between revisions of "Neutron Polarimeter"
Jump to navigation
Jump to search
Line 29: | Line 29: | ||
2\ p^{\mu}_{\gamma}\ p^{\mu}_D - 2\ p^{\mu}_{\gamma}\ p^{\mu}_n - 2\ p^{\mu}_D\ p^{\mu}_n </math> | 2\ p^{\mu}_{\gamma}\ p^{\mu}_D - 2\ p^{\mu}_{\gamma}\ p^{\mu}_n - 2\ p^{\mu}_D\ p^{\mu}_n </math> | ||
− | <math> m_p | + | <math> m_p - m_{\gamma}(=0) - m_D - m_n = </math><br> |
<math> = 2\ T_{\gamma}\ m_D - 2\left( T_{\gamma}\ E_n - T_{\gamma}\ p_n\cos(\Theta_n)\right) - 2\ m_D\ E_n </math> <br> | <math> = 2\ T_{\gamma}\ m_D - 2\left( T_{\gamma}\ E_n - T_{\gamma}\ p_n\cos(\Theta_n)\right) - 2\ m_D\ E_n </math> <br> | ||
<math> = 2\ T_{\gamma}\left( m_D - E_n + p_n\cos(\Theta_n) \right) - 2\ m_D\ E_n </math> | <math> = 2\ T_{\gamma}\left( m_D - E_n + p_n\cos(\Theta_n) \right) - 2\ m_D\ E_n </math> | ||
Line 36: | Line 36: | ||
Finally we have: | Finally we have: | ||
− | <math> T_{\gamma} = \frac {2\ m_D\ E_n + m_p | + | <math> T_{\gamma} = \frac {2\ m_D\ E_n + m_p - m_D - m_n} {2\ \left( m_D - E_n + p_n\cos(\Theta_n) \right)} </math> |
Because our detector is <math>\Theta_n = 90^o</math> | Because our detector is <math>\Theta_n = 90^o</math> | ||
− | <math> T_{\gamma} = \frac {2\ m_D\ E_n + m_p | + | <math> T_{\gamma} = \frac {2\ m_D\ E_n + m_p - m_D - m_n} {2\left( m_D - E_n \right)} </math> |
==Analise of the energy dependence <math>T_{\gamma}\left(E_n\right)</math> == | ==Analise of the energy dependence <math>T_{\gamma}\left(E_n\right)</math> == |