Difference between revisions of "Neutron Polarimeter"
Jump to navigation
Jump to search
Line 21: | Line 21: | ||
Doing four-vector algebra: | Doing four-vector algebra: | ||
− | <math> p^{\mu}_{\gamma} + p^{\mu}_D = p^{\mu}_p + p^{\mu}_n \Rightarrow </math | + | <math> p^{\mu}_{\gamma} + p^{\mu}_D = p^{\mu}_p + p^{\mu}_n \Rightarrow </math> |
<math> p^{\mu\ 2}_p = \left(p^{\mu}_{\gamma} + p^{\mu}_D - p^{\mu}_n\right)^2 = | <math> p^{\mu\ 2}_p = \left(p^{\mu}_{\gamma} + p^{\mu}_D - p^{\mu}_n\right)^2 = | ||
Line 27: | Line 27: | ||
p^{\mu\ 2}_{\gamma} + p^{\mu\ 2}_D + p^{\mu\ 2}_n + 2\ p^{\mu}_{\gamma}\ p^{\mu}_D - 2\ p^{\mu}_n\left(p^{\mu}_{\gamma} + p^{\mu}_D\right) </math> | p^{\mu\ 2}_{\gamma} + p^{\mu\ 2}_D + p^{\mu\ 2}_n + 2\ p^{\mu}_{\gamma}\ p^{\mu}_D - 2\ p^{\mu}_n\left(p^{\mu}_{\gamma} + p^{\mu}_D\right) </math> | ||
− | <math> m_p^2 = | + | <math> m_p^2 = m_{\gamma}^2(=0) + m_D^2 + m_n^2 |
+ | |||
+ | = 2\ T_{\gamma}\ m_D - 2\left( T_{\gamma}\ E_n - T_{\gamma}\ p_n(\cos(\Theta_n)\right) - 2\ m_D\ E_n </math> | ||
+ | |||
+ | <math> 2/ T_{\gamma}\left( m_D - E_n + p_n(\cos(\Theta_n) \right) - 2\ m_D\ E_n </math> | ||
Line 33: | Line 37: | ||
− | |||