Difference between revisions of "Integrated asymmetry"

From New IAC Wiki
Jump to navigation Jump to search
Line 15: Line 15:
 
=Error calculation=
 
=Error calculation=
 
<math>Error = \sqrt{\left(\frac{\partial A}{\partial\ up}\right)^2(\delta\ up)^2 +
 
<math>Error = \sqrt{\left(\frac{\partial A}{\partial\ up}\right)^2(\delta\ up)^2 +
               \left(\frac{\partial A}{\partial\ Wup}\right)^2(\delta\ Wup)^2+...}</math>
+
               \left(\frac{\partial A}{\partial\ Wup}\right)^2(\delta\ Wup)^2+...}</math><br>
 
If assume:
 
If assume:
*<math>\delta\ up = /sqrt{up},\ \delta\ Wup = /sqrt{Wup},</math>
+
*<math>\delta\ up = \sqrt{up},\ \delta\ Wup = \sqrt{Wup},</math>
*<math>\delta\ upbg = /sqrt{upbg},\ \delta\ Wupbg = /sqrt{Wupbg},</math>
+
*<math>\delta\ upbg = \sqrt{upbg},\ \delta\ Wupbg = \sqrt{Wupbg},</math>
*<math>\delta\ sd = /sqrt{sd},\ \delta\ Wsd = /sqrt{Wsd},</math>
+
*<math>\delta\ sd = \sqrt{sd},\ \delta\ Wsd = \sqrt{Wsd},</math>
*<math>\delta\ sdbg = /sqrt{sdbg},\ \delta\ Wsdbg = /sqrt{Wsdbg},</math>
+
*<math>\delta\ sdbg = \sqrt{sdbg},\ \delta\ Wsdbg = \sqrt{Wsdbg},</math><br>
 
Then
 
Then
 
<math>Error = \sqrt{...}</math>
 
<math>Error = \sqrt{...}</math>

Revision as of 06:10, 7 June 2009

Go Back

Integrated asymmetry calculation

[math]Asymm = \frac{\sum \left[\left(\frac{up(ii)}{Wup}-\frac{upbg(ii)}{Wupbg}\right) - \left(\frac{sd(ii)}{Wsd}-\frac{sdbg(ii)}{Wsdbg}\right)\right]} {\sum \left[\left(\frac{up(ii)}{Wup}-\frac{upbg(ii)}{Wupbg}\right) + \left(\frac{sd(ii)}{Wsd}-\frac{sdbg(ii)}{Wsdbg}\right)\right]}[/math]

where

up(ii)   - D2O, detector Up,   Wup - weighted coefficient for up(ii)
upbg(ii) - H2O, detector Up, Wup - weighted coefficient for upbg(ii)
sd(ii) - D2O, detector Side, Wup - weighted coefficient for sd(ii)
sdbg(ii) - N2O, detector Side, Wup - weighted coefficient for sdbg(ii)

For detector A summation is over [1000:1600] bin numbers
For detector C summation is over [900:1600] bin numbers

Error calculation

[math]Error = \sqrt{\left(\frac{\partial A}{\partial\ up}\right)^2(\delta\ up)^2 + \left(\frac{\partial A}{\partial\ Wup}\right)^2(\delta\ Wup)^2+...}[/math]
If assume:

  • [math]\delta\ up = \sqrt{up},\ \delta\ Wup = \sqrt{Wup},[/math]
  • [math]\delta\ upbg = \sqrt{upbg},\ \delta\ Wupbg = \sqrt{Wupbg},[/math]
  • [math]\delta\ sd = \sqrt{sd},\ \delta\ Wsd = \sqrt{Wsd},[/math]
  • [math]\delta\ sdbg = \sqrt{sdbg},\ \delta\ Wsdbg = \sqrt{Wsdbg},[/math]

Then [math]Error = \sqrt{...}[/math]

Cases was analysed

Det A:

D2O Up,   files# [40,56,102,108,134,205,210,230];
H2O Up, files# [44];
D2O Side, files# [48,74,78,82,86,90,94,146,180,190,225,235];
H2O Side, files# [52];

Det C:

D2O Up,   files# [49,75,79,83,87,91,95,147,181,191,226,236];
H2O Up, files# [53];
D2O Side, files# [41,57,103,107,135,206,211,231];
H2O Side, files# [45];

The results are (File:Asymm table .pdf):

Table 1: Det A, weighted with NaI detector
Table 2: Det C, weighted with NaI detector
Table 3: Det A, weighted with Ref detector
Table 4: Det C, weighted with Ref detector



Change the X-axis to nanosecond or neutron energy (TF)
Only one "s" in Asymmetry

Example of bin by bin asymmetry

Asymm RefDet DetA 40,44,48(74,78),52.jpg


Go Back