Difference between revisions of "Forest FermiGoldenRule Notes"

From New IAC Wiki
Jump to navigation Jump to search
Line 163: Line 163:
 
The general expression for the cross section via Fermi's golden rule is given as
 
The general expression for the cross section via Fermi's golden rule is given as
  
: <math>d \sigma = \left( \frac{\hbar }{8 \pi}\right )^2 \frac{S |M|^2}{\sqrt{ \left [ \left ( p_1 \right )_{\mu} \left ( p_2\right )^{\mu})\right ]^2 - (m_1 m_2)^2}} \left [ \left ( \frac{d^3p_3}{E_3}\right) \left ( \frac{d^3p_4}{E_4}\right) \right ] \delta^4(p_1^{\mu}+p_2^{\mu}-p_3^{\mu}-p_4^{\mu})</math>
+
: <math>d^2 \sigma = \left( \frac{\hbar }{8 \pi}\right )^2 \frac{S |M|^2}{\sqrt{ \left [ \left ( p_1 \right )_{\mu} \left ( p_2\right )^{\mu})\right ]^2 - (m_1 m_2)^2}} \left [ \left ( \frac{d^3p_3}{E_3}\right) \left ( \frac{d^3p_4}{E_4}\right) \right ] \delta^4(p_1^{\mu}+p_2^{\mu}-p_3^{\mu}-p_4^{\mu})</math>
 
In the CM frame
 
In the CM frame
  
Line 198: Line 198:
 
integrating over <math>d^3 \vec{p}_4</math> we have
 
integrating over <math>d^3 \vec{p}_4</math> we have
  
: <math>\int \int d \sigma = \int \int \left( \frac{\hbar }{8 \pi}\right )^2 \frac{S |M|^2}{(E_1 + E_2)p_1} \left [ \left ( \frac{d^3p_3}{E_3}\right) \left ( \frac{d^3p_4}{E_4}\right) \right ] \delta(E_1+E_2-E_3-E_4) \delta^3( -\vec{p}_3 - \vec{p}_4)</math>
+
: <math>\int \int d^2\sigma = \int \int \left( \frac{\hbar }{8 \pi}\right )^2 \frac{S |M|^2}{(E_1 + E_2)p_1} \left [ \left ( \frac{d^3p_3}{E_3}\right) \left ( \frac{d^3p_4}{E_4}\right) \right ] \delta(E_1+E_2-E_3-E_4) \delta^3( -\vec{p}_3 - \vec{p}_4)</math>
 
:<math>=\int \int \left( \frac{\hbar }{8 \pi}\right )^2 \frac{S |M|^2}{(E_1 + E_2)p_1} \left [ \left ( \frac{d^3p_3}{E_3}\right) \left ( \frac{d^3p_4}{\sqrt{p_4^2 + m_4^2}}\right) \right ] \delta(E_1+E_2-E_3-\sqrt{p_4^2 + m_4^2}) \delta^3( -\vec{p}_3 - \vec{p}_4)</math>
 
:<math>=\int \int \left( \frac{\hbar }{8 \pi}\right )^2 \frac{S |M|^2}{(E_1 + E_2)p_1} \left [ \left ( \frac{d^3p_3}{E_3}\right) \left ( \frac{d^3p_4}{\sqrt{p_4^2 + m_4^2}}\right) \right ] \delta(E_1+E_2-E_3-\sqrt{p_4^2 + m_4^2}) \delta^3( -\vec{p}_3 - \vec{p}_4)</math>
 
: <math>=\int \left( \frac{\hbar }{8 \pi}\right )^2 \frac{S |M|^2}{(E_1 + E_2)p_1} \left [ \left ( \frac{d^3p_3}{E_3}\right) \left ( \frac{1}{\sqrt{p_3^2 + m_4^2}}\right) \right ] \delta(E_1+E_2-E_3-\sqrt{p_3^2 + m_4^2}) </math>
 
: <math>=\int \left( \frac{\hbar }{8 \pi}\right )^2 \frac{S |M|^2}{(E_1 + E_2)p_1} \left [ \left ( \frac{d^3p_3}{E_3}\right) \left ( \frac{1}{\sqrt{p_3^2 + m_4^2}}\right) \right ] \delta(E_1+E_2-E_3-\sqrt{p_3^2 + m_4^2}) </math>
  
 
[http://iac.isu.edu/mediawiki/index.php/Classes Back to Classes]
 
[http://iac.isu.edu/mediawiki/index.php/Classes Back to Classes]

Revision as of 22:11, 29 November 2007

Fermi's Golden Rule

Fermi's Golden rule is used to calculate the probability (per unit time) of a quantum mechanical transition between two quantum states. Although Fermi first coined the term "Golden Rule", Dirac developed most of the machinery.

The first part of the Golden rule is the transition matrix element (or "Amplitude") Mi,f

Transition Amplitude

|Mi,f|2ψi(r)Hintψf(r)dr3

where

ψi = initial quantum state of the system which is an eigenstate of the time independent ("steady state") Hamiltonian (H0)
ψf = final quantum state of system after a transition
Hint = the part of the total Hamiltonian (Htot) which describes the interaction responsible for the transition.
H0 = Unperturbed ("steady state") Hamiltonian
Htot=H0+Hint = total Hamiltonian describing the quantum mechanical system
dr2 integration over all space

The off diagonal elements of the Mi,f matrix tell you the transition probablility.

Single Particle decay

Consider the case when a single particle decays into multiple fragments (several other particles)

dΓ=W=|M|2S2m1[(d3p2(2π)32E2)(d3p3(2π)32E3)(d3p4(2π)32E4)(d3pN(2π)32EN)]×(2π)4δ4(pμ1pμ2pμ3pμn)

where

W = probability per second that the particle will decay
S = a symmetry factor of (1j!) for every group of j identical particles in the final state
pμi=(Ei,pi)= 4-momentum of the ith particle. ;p1=(E1,0)
δ4(p1p2p3pn) = conservation of 4-momentum
Note
d3pi2Ei=d4piδ(p2im2i) = invariant under Lorentz transformations

Example: Pi-zero (π0) decay

π0γ+γ

we are interested in calculating

dΓ=W=|M|2S2m1[(d3p2(2π)32E2)(d3p3(2π)32E3)](2π)4δ4(pμ1pμ2pμ3)

Consider the decay of a neutral pion (π0) into two photons (γ).

The two gammas are identical particles so

S=12!=112=12

Since the pion is initially at rest (or we can go to its rest fram and then Lorentz boost to back to the lab frame)

pμ1=(E1,p1)=(E1,0)=(mπ0,0)

Because photons have no mass, m2=m3=0 :

pμ2=(E2,p2)=(|p2|,p2)=(p2,p2)
pμ3=(E3,p3)=(|p3|,p3)=(p3,p3)


δ4(pμ1pμ2pμ3)=δ(mπp2p3)δ(0p2p3)
dΓ=|M|216(2π)6mπ[(d3p2E2)(d3p3E3)](2π)4δ(mπp2p3)δ(0p2p3)
=|M|2(8π)2mπ[(d3p2E2)(d3p3E3)]δ(mπp2p3)δ(0p2p3)
=|M|2(8π)2mπp2p3[(d3p2)(d3p3)]δ(mπp2p3)δ(0p2p3)

Integrating overd3p3p2=p3,|p2|=|p3| :

dΓ=|M|2(8π)2mπp22[(d3p2)]δ(mπ2p2)
=|M|2(8π)2mπp22[(|p2|2d|p2|sin(θ)dθdϕ)]δ(mπ2p2)

If |M|2=f(p2)f(p2,p3)( the transition does not depend on the momentum vector directions)

then

dΓ=|M|2(8π)2mπ1p22[(|p2|2d|p2|sin(θ)dθdϕ)]δ(mπ2p2)
=1(8π)2mπ|M|2δ(mπ2p2)d|p2|sin(θ)dθdϕ
=1(8π)2mπ(4π)|M|2δ(mπ2p2)d|p2|
=1(16π)mπ|M|2δ(mπ2p2)d|p2|
=|M|2(16π)mπ12:δ(kx)=δ(x)kδ(mπ2p2)=δ(mπ2p2)2


Γ=|M|2(32π)mπ with the additional conditions that p2=mπ2and p2=p3 which must be applied when evaluating|M|2
Units check
mπ=(6.582×1010MeVs)(150MeV)=9.97×108MeV2s
[|M|2]=MeV2= energy eigenvalues squared
[Γ]=MeV2MeV2s=1s= transition probability per unit time
Caveat
Sometime |M| will depend on the momentum vector directions in which case the integral must be done after evaluating the matrix element amplitude. An example of this is when the transition is spin dependent (ps) as in the hyperfine interaction or polarization based transitions.

Example: Two -Body decay (fission fragments)

Now consider a more general case in whigh the decay daughters have mass:

dΓ=W=|M|2S2m1[(d3p2(2π)32E2)(d3p3(2π)32E3)](2π)4δ4(pμ1pμ2pμ3)

We don't know if the two daughter particles are identical so leave S as a funtion.

S=?

We can still do the calculation in the mother particles rest frame.

pμ1=(E1,p1)=(E1,0)=(m1,0)

Now that the daughters have mass we need:

pμ2=(E2,p2)E2=p22+m22
pμ3=(E3,p3)E3=p23+m23
dΓ=S|M|28(2π)6m1[(d3p2E2)(d3p3E3)](2π)4δ(m1p2p3)δ(0p2p3)

Recast the delta function:

δ4(pμ1pμ2pμ3)=δ(m1E2E3)δ(0p2p3)

Upon integrating over d3p3

δ(0p2p3)|p2|=|p3|E3=p23+m23=E3=p22+m23


δ4(pμ1pμ2pμ3)=δ(m1p22+m22p22+m23)

After integrating over d3p3 the delta function gives you

dΓ=S|M|28(2π)2m1[(d3p2E2p22+m23)]δ(m1p22+m22p22+m23)

Once again , if the transition amplitude does not depend on the vector directions ofp2 and p3 then you can integrate over angles (θ,ϕ) and get a 4π.

dΓ=S8πm1[(|M|2|p2|2d|p2|E2p22+m23)]δ(m1p22+m22p22+m23)

Let

Etotp22+m22+p23+m23=p22+m22+p22+m23

Then

dEtot=Etotp2dp2p22+m22p22+m23

substituting


Γ=S8πm1|M|2p2Etotδ(m1Etot)dEtot
=S8πm1|M|2p2Etot

where Etot=m1

and

p2 = momentum when Etot=m1=p22+m22+p22+m23

or

p2=12m1m41+m42+m432m21m222m22m232m23m21
Γ=S8πm21|M|212m1m41+m42+m432m21m222m22m232m23m21

2 Body scattering in CM frame

Lets consider the case when two particles ( m1 and m2) collide and are transformed into two separate particle (m3 and m4). An interaction happens during the collision which changes the two particles into two other particles.


Calculate the differential cross section, in the center of momentum frame, assuming that |M| is the amplitude for this collision.


The general expression for the cross section via Fermi's golden rule is given as

d2σ=(8π)2S|M|2[(p1)μ(p2)μ)]2(m1m2)2[(d3p3E3)(d3p4E4)]δ4(pμ1+pμ2pμ3pμ4)

In the CM frame

p1=p2

(p1)μ(p2)μ

=(E1,p1)(E2,p2)
=E1E2p1p2
=E1E2+p21

[(p1)μ(p2)μ)]2=[E1E2+p21]2

=(E21E22+2E1E2p21+p41
=[p21+m21p21+m22]2+p41+2E1E2p21
=p41+(m1+m2)p21+(m1m2)2+p41+2E1E2p21
=(p21+m21+p21+m22)p21+(m1m2)2+2E1E2p21
=(E21+E22)p21+2E1E2+(m1m2)2
=(E1+E2)2p21+(m1m2)2
[(p1)μ(p2)μ)]2=(E1+E2)2p21+(m1m2)2

or

[(p1)μ(p2)μ)]2(m1m2)2=(E1+E2)p1

substituting the above and

δ4(pμ1+pμ2pμ3pμ4)=δ(E1+E2E3E4)δ3(p1+p2p3p4)
=δ(E1+E2E3E4)δ3(p3p4) : p1=p2

into the cross ection equation we have

dσ=(8π)2S|M|2(E1+E2)p1[(d3p3E3)(d3p4E4)]δ(E1+E2E3E4)δ3(p3p4)

integrating over d3p4 we have

d2σ=(8π)2S|M|2(E1+E2)p1[(d3p3E3)(d3p4E4)]δ(E1+E2E3E4)δ3(p3p4)
=(8π)2S|M|2(E1+E2)p1[(d3p3E3)(d3p4p24+m24)]δ(E1+E2E3p24+m24)δ3(p3p4)
=(8π)2S|M|2(E1+E2)p1[(d3p3E3)(1p23+m24)]δ(E1+E2E3p23+m24)

Back to Classes