Difference between revisions of "Differential Cross-Section"

From New IAC Wiki
Jump to navigation Jump to search
Line 97: Line 97:
 
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}-\frac{32E^{*4}}{4p^{*2}}+\frac{4E^{*4}\cos{2\theta}}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center>
 
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}-\frac{32E^{*4}}{4p^{*2}}+\frac{4E^{*4}\cos{2\theta}}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center>
  
 +
 +
 +
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}-\frac{8E^{*4}}{p^{*2}}+\frac{4E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)</math></center>
  
 
<center><math>\therefore E^2\equiv m^2+p^2 </math></center>
 
<center><math>\therefore E^2\equiv m^2+p^2 </math></center>

Revision as of 16:45, 30 December 2018

[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]

Differential Cross-Section

[math]\frac{d\sigma}{d\Omega}=\frac{1}{64\pi ^2 s}\frac{\mathbf p_{final}}{\mathbf p_{initial}} |\mathfrak{M} |^2[/math]


Working in the center of mass frame

[math]\mathbf p_{final}=\mathbf p_{initial}[/math]


Determining the scattering amplitude in the center of mass frame


[math]\mathfrak{M}=e^2 \left ( \frac{u-s}{t}+\frac{t-s}{u} \right )[/math]


[math]\mathfrak{M}^2=e^4 \left ( \frac{u-s}{t}+\frac{t-s}{u} \right )\left ( \frac{u-s}{t}+\frac{t-s}{u} \right )[/math]


[math]\mathfrak{M}^2=e^4 \left ( \frac{(u-s)^2}{t^2}+\frac{(t-s)^2}{u^2} +2\frac{(u-s)}{t}\frac{(t-s)}{u}\right )[/math]


[math]\mathfrak{M}^2=e^4 \left ( \frac{(u^2-2us+s^2)}{t^2}+\frac{(t^2-2ts+s^2)}{u^2} +2\frac{(ut-st+s^2-us)}{tu}\right )[/math]


[math]\mathfrak{M}^2=e^4 \left ( \frac{(t^2+s^2)}{u^2}-\frac{2s^2}{tu}+\frac{(u^2+s^2)}{t^2}\right )[/math]


Using the fine structure constant ([math]with\ c=\hbar=\epsilon_0=1[/math])

[math]\alpha \equiv \frac{e^2}{4\pi}[/math]


[math]\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{2s}\left ( \frac{(t^2+s^2)}{u^2}-\frac{2s^2}{tu}+\frac{(u^2+s^2)}{t^2}\right )[/math]


In the center of mass frame the Mandelstam variables are given by:

[math]s \equiv 4E^{*2}[/math]


[math]t \equiv -2p^{*2}(1-\cos{\theta})=-2p^{*2}\left (1-2\cos^2{\frac{\theta}{2}}+1 \right )=-4p^{*2} \left (1-2\cos^2{\frac{\theta}{2}} \right )=-4p^{*2}\sin^2{\frac{\theta}{2}}[/math]



[math]u \equiv -2p^{*2}(1+\cos{\theta})=-2p^{*2}\left (1+2\cos^2{\frac{\theta}{2}}-1 \right )=-4p^{*2}\cos^2{\frac{\theta}{2}}[/math]


Simplifying using the relationship

[math]\cos{\theta}=-1+\cos{\frac{\theta}{2}}[/math]



[math]\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{16p^{*4}\sin^4{\frac{\theta}{2}}+16E^{*4}}{16p^{*4}\cos^4{\frac{\theta}{2}}}-\frac{32E^{*4}}{4p^{*2}\sin^2{\frac{\theta}{2}}4p^{*2}\cos^2{\frac{\theta}{2}}}+\frac{16p^{*4}\cos^4{\frac{\theta}{2}}+16E^{*4}}{16p^{*4}\sin^4{\frac{\theta}{2}}}\right )[/math]



[math]\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{16p^{*4}\sin^4{\frac{\theta}{2}}+16E^{*4}}{16p^{*4}\cos^4{\frac{\theta}{2}}}-\frac{32E^{*4}}{4p^{*2}\left(\sin^2{\frac{\theta}{2}}+\cos^2{\frac{\theta}{2}}\right)}+\frac{16p^{*4}\cos^4{\frac{\theta}{2}}+16E^{*4}}{16p^{*4}\sin^4{\frac{\theta}{2}}}\right )[/math]


[math]\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{16p^{*4}\sin^4{\frac{\theta}{2}}}{16p^{*4}\cos^4{\frac{\theta}{2}}}+\frac{16E^{*4}}{16p^{*4}\cos^4{\frac{\theta}{2}}}-\frac{32E^{*4}}{4p^{*2}}+\frac{16p^{*4}\cos^4{\frac{\theta}{2}}}{16p^{*4}\sin^4{\frac{\theta}{2}}}+\frac{16E^{*4}}{16p^{*4}\sin^4{\frac{\theta}{2}}}\right )[/math]


[math]\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{16p^{*4}\sin^4{\frac{\theta}{2}}}{16p^{*4}\cos^4{\frac{\theta}{2}}}+\frac{16E^{*4}\sin^4{\frac{\theta}{2}}}{16p^{*4}\cos^4{\frac{\theta}{2}}\sin^4{\frac{\theta}{2}}}-\frac{32E^{*4}}{4p^{*2}}+\frac{16p^{*4}\cos^4{\frac{\theta}{2}}}{16p^{*4}\sin^4{\frac{\theta}{2}}}+\frac{16E^{*4}\cos^4{\frac{\theta}{2}}}{16p^{*4}\sin^4{\frac{\theta}{2}}\cos^4{\frac{\theta}{2}}}\right )[/math]


[math]\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\frac{16E^{*4}\sin^4{\frac{\theta}{2}}}{p^{*4}\sin^4{\theta}}-\frac{32E^{*4}}{4p^{*2}}+\cot^4{\frac{\theta}{2}}+\frac{16E^{*4}\cos^4{\frac{\theta}{2}}}{p^{*4}\sin^4{\theta}}\right )[/math]


[math]\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}-\frac{32E^{*4}}{4p^{*2}}+\frac{16E^{*4}\cos^4{\frac{\theta}{2}}}{p^{*4}\sin^4{\theta}}+\frac{16E^{*4}\sin^4{\frac{\theta}{2}}}{p^{*4}\sin^4{\theta}}\right )[/math]


[math]\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}-\frac{32E^{*4}}{4p^{*2}}+\frac{4E^{*4}\left(\cos{2\theta}+3\right)}{p^{*4}\sin^4{\theta}}\right )[/math]


[math]\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}-\frac{32E^{*4}}{4p^{*2}}+\frac{4E^{*4}\cos{2\theta}}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)[/math]


[math]\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \tan^4{\frac{\theta}{2}}+\cot^4{\frac{\theta}{2}}-\frac{8E^{*4}}{p^{*2}}+\frac{4E^{*4}\left(\cos^2{\theta}-\sin^2{\theta}\right)}{p^{*4}\sin^4{\theta}}+\frac{12E^{*4}}{p^{*4}\sin^4{\theta}} \right)[/math]
[math]\therefore E^2\equiv m^2+p^2 [/math]






[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]