Difference between revisions of "Scattering Amplitude"
Jump to navigation
Jump to search
(2 intermediate revisions by the same user not shown) | |||
Line 30: | Line 30: | ||
− | <center><math>-i \mathfrak{M}_{1}=ie(\mathbf p_{1}+\mathbf p_{1}^{'})^{\mu} \left (\frac{-ig_{\mu \nu}}{q^2} \right ) ie ( \mathbf p_{2}+\mathbf | + | <center><math>-i \mathfrak{M}_{1}=ie\left(\mathbf p_{1}+\mathbf p_{1}^{'}\right)^{\mu} \left(\frac{-ig_{\mu \nu}}{q^{2}} \right) ie \left( \mathbf p_{2}+\mathbf p_{2}^{'}\right)^{\nu} \qquad \qquad -i \mathfrak{M}_{2}=ie\left(\mathbf p_{1}+\mathbf p_{2}^{'}\right)^{\mu} \left(\frac{-ig_{\mu \nu}}{q^2} \right) ie \left( \mathbf p_{2}+\mathbf p_{1}^{'}\right)^{\nu}</math></center> |
Line 37: | Line 37: | ||
− | <center><math>-i \mathfrak{M}_{1}=ie^{2}\left (\frac{(\mathbf p_{1}+\mathbf p_{1}^{'})_{\mu} (\mathbf p_{2}+\mathbf p_{2}^{'})^{\mu}}{(\mathbf p_{2}^{'}-\mathbf p_{2})^{2}} \right ) \qquad \qquad -i \mathfrak{M}_{2}=ie^{2}\left (\frac{(\mathbf p_{1}+\mathbf p_{2}^')_{\mu} (\mathbf p_{2}+\mathbf p_{1}^{'})^{\mu}}{(\mathbf p_{1}^{'}-\mathbf p_{2})^{2}} \right ) </math></center> | + | <center><math>-i \mathfrak{M}_{1}=ie^{2}\left (\frac{\left(\mathbf p_{1}+\mathbf p_{1}^{'}\right)_{\mu} \left(\mathbf p_{2}+\mathbf p_{2}^{'}\right)^{\mu}}{\left(\mathbf p_{2}^{'}-\mathbf p_{2}\right)^{2}} \right ) \qquad \qquad -i \mathfrak{M}_{2}=ie^{2}\left (\frac{\left(\mathbf p_{1}+\mathbf p_{2}^{'}\right)_{\mu} \left(\mathbf p_{2}+\mathbf p_{1}^{'}\right)^{\mu}}{\left(\mathbf p_{1}^{'}-\mathbf p_{2}\right)^{2}} \right ) </math></center> |
Latest revision as of 21:12, 29 December 2018
Scattering Amplitude
In the Møller scattering
we have identical particles in the initial and final states. This that the amplitude to be symmetric under interchange of particles or . Due to this symmetry we can determine two 1st level Feynman diagrams to describe this scattering.The amplitudes of the individual Feynman diagrams add linearly to form the total amplitude
Using the Feynman rules, each vertex contribute a factor
and the propagator gives
where q is the momentum of the photon
and
is the Mandelstam metric which allows the transformation from the contravariant to covariant form needed for tensor multiplication. Examining both Feynman diagrams seperately, we find for their individual amplitudes
Without loss of generality, we can extend this to the center of mass frame
Using the fact that