Difference between revisions of "The Wires"
Jump to navigation
Jump to search
| (9 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| + | <center><math>\underline{\textbf{Navigation}}</math> | ||
| + | |||
| + | [[Points_of_Intersection|<math>\vartriangleleft </math>]] | ||
| + | [[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]] | ||
| + | [[Right_Hand_Wall|<math>\vartriangleright </math>]] | ||
| + | |||
| + | </center> | ||
| + | |||
| + | |||
We can parametrize the equations for the wires and wire midpoints to express the equation in vector form. In the y'-x' plane the general equation follows the relationship: | We can parametrize the equations for the wires and wire midpoints to express the equation in vector form. In the y'-x' plane the general equation follows the relationship: | ||
| Line 11: | Line 20: | ||
<center><math>x' = y\ sin\ 6^{\circ}+x_0</math></center> | <center><math>x' = y\ sin\ 6^{\circ}+x_0</math></center> | ||
| + | |||
| + | |||
<center><math>y' = y\ cos\ 6^{\circ}</math></center> | <center><math>y' = y\ cos\ 6^{\circ}</math></center> | ||
The parameterization has reduced two equations with two variables, to two equations which depend on one variable. Working in the y-x plane, we will undergo a positive rotation, | The parameterization has reduced two equations with two variables, to two equations which depend on one variable. Working in the y-x plane, we will undergo a positive rotation, | ||
| − | |||
| − | |||
| − | |||
| − | ) | + | <center><math>R(\theta_{yx})=\begin{bmatrix} |
| + | cos\ 6^{\circ} &-sin\ 6^{\circ} & 0 \\ | ||
| + | sin\ 6^{\circ} & cos\ 6^{\circ} &0 \\ | ||
| + | 0 &0 & 1 | ||
| + | \end{bmatrix}</math></center> | ||
| − | + | <center><math>\begin{bmatrix} | |
| − | same vector | + | Components\ of \\ |
| − | in new system | + | same\ vector \\ |
| − | + | in\ new\ system | |
| − | + | \end{bmatrix} | |
| − | transformation | + | =\begin{bmatrix} |
| + | Passive \\ | ||
| + | transformation \\ | ||
matrix | matrix | ||
| + | \end{bmatrix}\cdot | ||
| + | \begin{bmatrix} | ||
| + | Components\ of \\ | ||
| + | vector\ in \\ | ||
| + | original\ system | ||
| + | \end{bmatrix}</math></center> | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | <center><math> | |
| − | + | \begin{bmatrix} | |
| − | + | x'' \\ | |
| − | + | y'' \\ | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | y'' | ||
z'' | z'' | ||
| − | + | \end{bmatrix}= | |
| − | + | \begin{bmatrix} | |
| − | sin 6\ | + | cos\ 6^{\circ} &-sin\ 6^{\circ} & 0 \\ |
| − | 0 0 1 | + | sin\ 6^{\circ} & cos\ 6^{\circ} &0 \\ |
| − | + | 0 &0 & 1 | |
| − | + | \end{bmatrix}\cdot | |
| − | y' | + | \begin{bmatrix} |
| + | x' \\ | ||
| + | y' \\ | ||
z' | z' | ||
| + | \end{bmatrix}</math></center> | ||
| + | |||
| − | + | <center><math> | |
| − | y' | + | \begin{bmatrix} |
| − | z' | + | x'' \\ |
| + | y'' \\ | ||
| + | z'' | ||
| + | \end{bmatrix}= | ||
| + | \begin{bmatrix} | ||
| + | cos\ 6^{\circ} &-sin\ 6^{\circ} & 0 \\ | ||
| + | sin\ 6^{\circ} & cos\ 6^{\circ} &0 \\ | ||
| + | 0 &0 & 1 | ||
| + | \end{bmatrix}\cdot | ||
| + | \begin{bmatrix} | ||
| + | y'\ sin\ 6^{\circ}+x_0 \\ | ||
| + | y'\ cos\ 6^{\circ} \\ | ||
| + | 0 | ||
| + | \end{bmatrix}</math></center> | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | <center><math> | |
| − | + | \begin{bmatrix} | |
| − | + | x'' \\ | |
| − | y'' | + | y'' \\ |
z'' | z'' | ||
| + | \end{bmatrix}= | ||
| + | \begin{bmatrix} | ||
| + | -y'\ cos\ 6^{\circ}sin\ 6^{\circ}+x_0\ cos\ 6^{\circ} +y'\ cos\ 6^{\circ}sin\ 6^{\circ}\\ | ||
| + | y'\ cos^2 6^{\circ}+x_0\sin\ 6^{\circ}+y sin^2 6^{\circ} \\ | ||
| + | 0 | ||
| + | \end{bmatrix}</math></center> | ||
| + | |||
| − | |||
| − | |||
| − | |||
| − | + | <center><math> | |
| − | y | + | \begin{bmatrix} |
| + | x'' \\ | ||
| + | y'' \\ | ||
| + | z'' | ||
| + | \end{bmatrix}= | ||
| + | \begin{bmatrix} | ||
| + | x_0\ cos\ 6^{\circ}\\ | ||
| + | y'\ +x_0\sin\ 6^{\circ} \\ | ||
0 | 0 | ||
| + | \end{bmatrix}</math></center> | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | This relationship shows us that x'' is a constant in this frame while y'' can have any value, which is the horizontal line with respect to the y axis as expected. | |
| − | + | ||
| − | |||
| − | + | ---- | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | <center><math>\underline{\textbf{Navigation}}</math> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | [[Points_of_Intersection|<math>\vartriangleleft </math>]] | |
| − | + | [[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]] | |
| − | + | [[Right_Hand_Wall|<math>\vartriangleright </math>]] | |
| − | + | </center> | |
Latest revision as of 20:32, 15 May 2018
We can parametrize the equations for the wires and wire midpoints to express the equation in vector form. In the y'-x' plane the general equation follows the relationship:
where is the point where the line crosses the x axis.
In this form we can easily see that the components of x and y , in the y'-x' plane are
The parameterization has reduced two equations with two variables, to two equations which depend on one variable. Working in the y-x plane, we will undergo a positive rotation,
This relationship shows us that x is a constant in this frame while y can have any value, which is the horizontal line with respect to the y axis as expected.