Difference between revisions of "Scattered and Moller Electron Energies in CM Frame"
Jump to navigation
Jump to search
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <center><math>\ | + | <center><math>\underline{\textbf{Navigation}}</math> |
− | [[ | + | [[Total_Energy_in_CM_Frame|<math>\vartriangleleft </math>]] |
[[VanWasshenova_Thesis#Initial_4-momentum_Components|<math>\triangle </math>]] | [[VanWasshenova_Thesis#Initial_4-momentum_Components|<math>\triangle </math>]] | ||
− | [[ | + | [[Final_Lab_Frame_Moller_Electron_4-momentum_components_in_XZ_Plane|<math>\vartriangleright </math>]] |
</center> | </center> | ||
Line 49: | Line 49: | ||
− | <center><math> | + | <center><math>s \equiv 2m^2+2E_1^{*2}+2\vec p_1 \ ^{*2} </math></center> |
Line 57: | Line 57: | ||
− | <center><math> | + | <center><math>s \equiv 2m^2+2m^2+2\vec p_1 \ ^{*2}+\vec p_1 \ ^{*2})</math></center> |
− | <center><math> | + | <center><math>s=4(m^2+\vec p_1 \ ^{*2})=(2E_1^*)^{2}=E^{*2}</math></center> |
+ | |||
+ | |||
+ | |||
+ | {| class="wikitable" align="center" | ||
+ | | style="background: gray" | <math>\Rightarrow E_1^*=\frac{106.030760886 MeV}{2}=53.015380443 MeV=E_2^*</math> | ||
+ | |} | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | |||
+ | <center><math>\underline{\textbf{Navigation}}</math> | ||
+ | |||
+ | [[Total_Energy_in_CM_Frame|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Initial_4-momentum_Components|<math>\triangle </math>]] | ||
+ | [[Final_Lab_Frame_Moller_Electron_4-momentum_components_in_XZ_Plane|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> |
Latest revision as of 18:54, 15 May 2018
Scattered and Moller Electron energies in CM
We can use the Mandelstam variable s, the square of the center of mass energy, to find
As shown earlier, the square of a 4-momentum is
This gives,
For the case
Using the relationship
In the center of mass frame of reference,
Using the relativistic energy equation