Difference between revisions of "Scattered and Moller Electron Energies in CM Frame"
Jump to navigation
Jump to search
(Created page with "=Scattered and Moller Electron energies in CM= Inspecting the Lorentz transformation to the Center of Mass frame: <center><math>\left( \begin{matrix}E^*_{1}+E^*_{2}\\ 0 \\ 0 \\…") |
|||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | <center><math>\underline{\textbf{Navigation}}</math> | |
− | |||
+ | [[Total_Energy_in_CM_Frame|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Initial_4-momentum_Components|<math>\triangle </math>]] | ||
+ | [[Final_Lab_Frame_Moller_Electron_4-momentum_components_in_XZ_Plane|<math>\vartriangleright </math>]] | ||
− | + | </center> | |
− | + | =Scattered and Moller Electron energies in CM= | |
− | |||
+ | We can use the Mandelstam variable s, the square of the center of mass energy, to find <math>E^*</math> | ||
− | + | <center><math>s \equiv \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2</math></center> | |
− | <center><math>\ | + | <center><math>s \equiv \mathbf P_1^{*2}+2 \mathbf P_1^* \mathbf P_2^*+ \mathbf P_2^{*2}</math></center> |
− | |||
− | |||
− | |||
− | + | As shown earlier, the square of a 4-momentum is | |
− | |||
+ | <center><math>\mathbf P^{2} \equiv m^2</math></center> | ||
− | + | This gives, | |
− | + | <center><math>s \equiv m_1^{2}+2 \mathbf P_1^* \mathbf P_2^*+ m_2^{2}</math></center> | |
− | |||
+ | For the case <math>m_1=m_2=m</math> | ||
− | |||
− | <center><math> | + | <center><math>s \equiv 2m^{2}+2 \mathbf P_1^* \mathbf P_2^*</math></center> |
+ | Using the relationship | ||
− | |||
+ | <center><math>\mathbf P_1 \cdot \mathbf P_2 = E_{1}E_{2}-(\vec p_1 \vec p_2)</math></center> | ||
− | |||
− | <center><math> | + | <center><math>s \equiv 2m^2+2(E_1^*E_2^*-\vec p \ _1^* \vec p \ _2^*)</math></center> |
− | |||
− | |||
− | |||
+ | In the center of mass frame of reference, | ||
+ | <center><math>E_1^*=E_2^* \quad and \quad \vec p \ _1^*=-\vec p \ _2^*</math></center> | ||
− | + | <center><math>s \equiv 2m^2+2E_1^{*2}+2\vec p_1 \ ^{*2} </math></center> | |
− | |||
+ | Using the relativistic energy equation | ||
− | <center><math> | + | <center><math>E^2 \equiv \vec p_1 \ ^2+m^2</math></center> |
− | <center><math>\ | + | <center><math>s \equiv 2m^2+2m^2+2\vec p_1 \ ^{*2}+\vec p_1 \ ^{*2})</math></center> |
− | |||
− | |||
− | |||
− | <center><math>\ | + | <center><math>s=4(m^2+\vec p_1 \ ^{*2})=(2E_1^*)^{2}=E^{*2}</math></center> |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | {| class="wikitable" align="center" | ||
+ | | style="background: gray" | <math>\Rightarrow E_1^*=\frac{106.030760886 MeV}{2}=53.015380443 MeV=E_2^*</math> | ||
+ | |} | ||
− | |||
− | |||
− | |||
− | |||
+ | ---- | ||
− | |||
+ | <center><math>\underline{\textbf{Navigation}}</math> | ||
− | < | + | [[Total_Energy_in_CM_Frame|<math>\vartriangleleft </math>]] |
+ | [[VanWasshenova_Thesis#Initial_4-momentum_Components|<math>\triangle </math>]] | ||
+ | [[Final_Lab_Frame_Moller_Electron_4-momentum_components_in_XZ_Plane|<math>\vartriangleright </math>]] | ||
− | + | </center> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 18:54, 15 May 2018
Scattered and Moller Electron energies in CM
We can use the Mandelstam variable s, the square of the center of mass energy, to find
As shown earlier, the square of a 4-momentum is
This gives,
For the case
Using the relationship
In the center of mass frame of reference,
Using the relativistic energy equation